Construction of solutions to the boundary value problem with singularity for a nonlinear parabolic system
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 64-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a system of two nonlinear second-order parabolic equations with singularity. Systems of this type are applied in chemical kinetics to describe reaction-diffusion processes. We prove the existence and uniqueness theorem of the analytical solution having the diffusion-wave type at a given wave front. The proof is constructive, and the solution is constructed in the form of a power series with recursively calculated coefficients. Besides, we propose a numerical algorithm based on the boundary element method. For its verification, we use segments of analytical solutions.
Keywords: nonlinear parabolic equations with singularity, reaction-diffusion system, power series, existence and uniqueness theorem, boundary element method, computational experiment
Mots-clés : diffusion wave.
@article{SJIM_2021_24_4_a4,
     author = {A. L. Kazakov and P. A. Kuznetsov and L. F. Spevak},
     title = {Construction of solutions to the boundary value problem with singularity for a nonlinear parabolic system},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {64--78},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a4/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - P. A. Kuznetsov
AU  - L. F. Spevak
TI  - Construction of solutions to the boundary value problem with singularity for a nonlinear parabolic system
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 64
EP  - 78
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a4/
LA  - ru
ID  - SJIM_2021_24_4_a4
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A P. A. Kuznetsov
%A L. F. Spevak
%T Construction of solutions to the boundary value problem with singularity for a nonlinear parabolic system
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 64-78
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a4/
%G ru
%F SJIM_2021_24_4_a4
A. L. Kazakov; P. A. Kuznetsov; L. F. Spevak. Construction of solutions to the boundary value problem with singularity for a nonlinear parabolic system. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 64-78. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a4/

[1] I. V. Stepanova, “Group analysis of variable coefficients heat and mass transfer equations with power nonlinearity of thermal diffusivity”, Appl. Math. Comput., 343 (2019), 57–66 | DOI | Zbl

[2] E. P. Zemskov, “Neustoichivost Tyuringa v reaktsionno-diffuzionnykh sistemakh s nelineinoi diffuziei”, Zhurn. eksperiment. i teor. fiziki, 144:4 (2013), 878–884

[3] A. V. Shmidt, “Tochnye resheniya sistem uravnenii tipa reaktsiya-diffuziya”, Vychisl. tekhnologii, 3:4 (1998), 87–94

[4] Ya. B. Zeldovich, Yu. P. Raizer, Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 1966

[5] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987

[6] J. L. Vazquez, The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007

[7] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, Teoriya nestatsionarnoi filtratsii zhidkosti i gaza, Nedra, M., 1972

[8] J. Murray, Mathematical Biology, v. I, Interdisciplinary Applied Mathematics, 17, An Introduction, Springer-Verl, N.Y., 2002 | DOI | Zbl

[9] N. E. Leontev, “Tochnye resheniya zadachi o filtratsii suspenzii s zamedleniem skachka kontsentratsii v ramkakh nelineinoi dvukhskorostnoi modeli”, Izv. RAN. Mekhanika zhidkosti i gaza, 2017, no. 1, 168–174 | DOI

[10] A. Arguchintsev, V. Poplevko, “An optimal control problem by a hybrid system of hyperbolic and ordinary differential equations”, Games, 12:1 (2021), 23 | DOI | Zbl

[11] A. Arguchintsev, V. Poplevko, “An optimal control problem by a hyperbolic system with boundary delay”, The Bulletin of Irkutsk State Univ. Ser.: Mathematics, 35 (2021), 3–17 | DOI | Zbl

[12] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998

[13] G. Gambino, M. C. Lombardo, M. Sammartino, V. Sciacca, “Turing pattern formation in the Brusselator system with nonlinear diffusion”, Phys. Rev. E, 88 (2013), 042925 | DOI

[14] A. V. Shmidt, “Analiz sistem reaktsiya-diffuziya metodom lineinykh opredelyayuschikh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 47:2 (2007), 256–268

[15] A. F. Sidorov, Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001

[16] M. Yu. Filimonov, “Representation of solutions of boundary value problems for nonlinear evolution equations by special series with recurrently caculated coefficients”, J. Physics. Conf. Ser., 2019, 012071 | DOI

[17] A. L. Kazakov, L. F. Spevak, “Metody granichnykh elementov i stepennykh ryadov v odnomernykh zadachakh nelineinoi filtratsii”, Izv. Irkutsk. gos. un-ta. Ser. Matematika, 5:2 (2012), 2–17 | Zbl

[18] A. L. Kazakov, P. A. Kuznetsov, “Ob odnoi kraevoi zadache dlya nelineinogo uravneniya teploprovodnosti v sluchae dvukh prostranstvennykh peremennykh”, Sib. zhurn. industr. matematiki, 17:1 (57) (2014), 46–54 | Zbl

[19] A. L. Kazakov, P. A. Kuznetsov, “Ob analiticheskikh resheniyakh odnoi spetsialnoi kraevoi zadachi dlya nelineinogo uravneniya teploprovodnosti v polyarnykh koordinatakh”, Sib. zhurn. industr. matematiki, 21:2 (74) (2018), 56–65 | Zbl

[20] L. F. Spevak, O. A. Nefedova, “Solving a two-dimensional nonlinear heat conduction equation with degeneration by the boundary element method with the application of the dual reciprocity method”, AIP Conf. Proc., 1785 (2016), 040077 | DOI

[21] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978

[22] A. D. Polyanin, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman and Hall/CRC, N.Y.–Boca Raton–London, 2012

[23] N. A. Kudryashov, D. I. Sinelschikov, “Analiticheskie resheniya nelineinogo uravneniya konvektsiidiffuzii s nelineinymi istochnikami”, Modelirovanie i analiz informatsionnykh sistem, 23:3 (2016), 309–316 | DOI

[24] A. L. Kazakov, Sv. S. Orlov, S. S. Orlov, “Postroenie i issledovanie nekotorykh tochnykh reshenii nelineinogo uravneniya teploprovodnosti”, Sib. mat. zhurn., 59:3 (2018), 544–560 | DOI | Zbl

[25] A. L. Kazakov, L. F. Spevak, “Priblizhennye i tochnye resheniya vyrozhdayuschegosya nelineinogo uravneniya teploprovodnosti s proizvolnoi nelineinostyu”, Izvestiya Irkutsk. gos. un-ta. Ser. Matematika, 34 (2020), 18–34 | DOI | Zbl

[26] A. L. Kazakov, P. A. Kuznetsov, A. A. Lempert, “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry, 12:6 (2020), 999 | DOI

[27] A. Arguchintsev, V. Poplevko, “An optimal control problem by parabolic equation with boundary smooth control and an integral constraint”, Numerical Algebra, Control and Optimization, 8:2 (2018), 193–202 | DOI | Zbl

[28] S. P. Bautin, A. L. Kazakov, Obobschennaya zadacha Koshi i ee prilozheniya, Nauka, Novosibirsk, 2006