Conditions of existence of cycles in two basic models of circadian oscillator of Mammalians
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 39-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct two non-linear dynamcal systems as models of symplest circadian oscillator's functioning. Conditions of uniqueness of equilibrium point of these systems are described as well as conditions of existence of cycles in their phase portraits.
Keywords: circadian oscillator, gene network, mathematical model, non-linear dynamical systems, positive and negative feedbacks, hyperbolic equilibrium point, cycle. .
Mots-clés : phase portrait
@article{SJIM_2021_24_4_a2,
     author = {V. P. Golubyatnikov and O. A. Podkolodnaya and N. L. Podkolodnyi and N. B. Ayupova and N. E. Kirillova and E. V. Yunosheva},
     title = {Conditions of existence of cycles in two basic models of circadian oscillator of {Mammalians}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {39--53},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a2/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
AU  - O. A. Podkolodnaya
AU  - N. L. Podkolodnyi
AU  - N. B. Ayupova
AU  - N. E. Kirillova
AU  - E. V. Yunosheva
TI  - Conditions of existence of cycles in two basic models of circadian oscillator of Mammalians
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 39
EP  - 53
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a2/
LA  - ru
ID  - SJIM_2021_24_4_a2
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%A O. A. Podkolodnaya
%A N. L. Podkolodnyi
%A N. B. Ayupova
%A N. E. Kirillova
%A E. V. Yunosheva
%T Conditions of existence of cycles in two basic models of circadian oscillator of Mammalians
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 39-53
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a2/
%G ru
%F SJIM_2021_24_4_a2
V. P. Golubyatnikov; O. A. Podkolodnaya; N. L. Podkolodnyi; N. B. Ayupova; N. E. Kirillova; E. V. Yunosheva. Conditions of existence of cycles in two basic models of circadian oscillator of Mammalians. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 39-53. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a2/

[1] U. Albrecht, “Timing to perfection: the biology of central and peripheral circadian clocks”, Neuron, 74:2 (2012), 246–260 | DOI

[2] S. A. Newman, G. Forgacs, “Complexity and self-orgatization in biological development and evolution”, Complexity in Chemistry, Biology and Ecology, Springer-Verl., 2005, 49–96 | DOI

[3] B. C. Goodwin, Temporal Organization in Cells; A Dynamic Theory of Cellular Control Processes, Acad. Press, London–N.Y., 1963

[4] B. C. Goodwin, “Oscillatory behavior in enzymatic control processes”, Adv. Enzyme Regul., 3 (1965), 425–438 | DOI

[5] O. A. Podkolodnaya, N. N. Tverdokhleb, N. L. Podkolodnyy, “Computational modeling of the cell autonomous mammalian circadian oscillator”, BMC Systems Biology, 11 (2017), 27–42 | DOI

[6] S. Almeida, M. Chaves, F. Delaunay, “Transcription-based circadian mechanism controls the duration of molecular clock states in response to signaling inputs”, J. Theor. Biology, 484 (2020), 110015 | DOI | Zbl

[7] T. K. Sato, S. Panda, L. J. Miraglia, T. M. Reyes, R. D. Rudic, P. Mcnamara, K. A. Naik, G. A. Fitzgerald, S. A. Kay, J. B. Hogenesch, “A functional genomics strategy reveals Rora as a component of the mammalian circadian clock”, Neuron, 43:4 (2004), 527–537 | DOI

[8] S. Hastings, J. Tyson, D. Webster, “Existebce of periodic solutions for negative feedback cellular control system”, J. Different. Equat., 25 (1977), 39–64 | DOI | Zbl

[9] J. Hofbauer, J. Mallet-Paret, H. L. Smith, “Stable periodic solutions for the hypercycle system”, J. Dynamics Different. Equat., 3:3 (1991), 423–436 | DOI | Zbl

[10] A. A. Akinshin, T. A. Bukharina, V. P. Golubyatnikov, D. P. Furman, “Matematicheskoe modelirovanie vzaimodeistviya dvukh kletok v proneiralnom klastere krylovogo imaginalnogo diska D. melanogaster”, Sib. zhurn. chistoi i prikl. matematiki, 14:4 (2014), 3–10 | Zbl

[11] M. B. Elowitz, S. Leibler, “A synthetic oscillatory network of transcriptional regulators”, Nature, 403 (2000), 335–338 | DOI

[12] Sistemnaya kompyuternaya biologiya, Izd-vo SO RAN, Novosibirsk, 2008

[13] T. A. Bukharina, A. A. Akinshin, V. P. Golubyatnikov, D. P. Furman, “Matematicheskaya i chislennaya model tsentralnogo regulyatornogo kontura sistemy morfogeneza mekhanoretseptorov drozofily”, Sib. zhurn. industr. matematiki, 23:2 (2020), 41–50

[14] L. Glass, J. S. Pasternack, “Stable oscillations in mathematcal models of biological control systems”, J. Math. Biology, 6 (1978), 207–223 | DOI | Zbl

[15] R. Smith, “Orbital stability of ordinary differential equations”, J. Different. Equat., 69 (1987), 265–287 | DOI | Zbl

[16] Yu. A. Gaidov, V. P. Golubyatnikov, “O nekotorykh nelineinykh dinamicheskikh sistemakh, modeliruyuschikh nesimmetrichnye gennye seti”, Sib. zhurn. chistoi i prikl. matematiki, 7:2 (2007), 8–17

[17] Yu. A. Gaidov, V. P. Golubyatnikov, E. Mjolsness, “Topological index of a model of p53-Mdm2 circuit”, Inform. vestn. Vavilovskogo ob-va genetikov i selektsionerov, 13:1 (2009), 160–162

[18] N. E. Kirillova, “Ob invariantnykh poverkhnostyakh v modelyakh gennykh setei”, Sib. zhurn. industr. matematiki, 23:4 (2020), 69–76

[19] D. V. Anosov, Otobrazheniya okruzhnosti, vektornye polya i ikh primeneniya, Izd-vo MTsNMO, M., 2003

[20] R. Abraham, J. Robbins, Transversal Mappings and Flows, W.A. Benjamin, N.Y., 1967 | Zbl

[21] D. V. Anosov, “Remarks concerning hyperbolic sets”, J. Math. Sci., 78:5 (1996), 497–529 | DOI | Zbl

[22] J. S. Griffith, “Mathematics of cellular control processes. I. Negative feedback to one gene”, J. Theor. Biol., 20:2 (1968), 202–208 | DOI

[23] D. Gonze, W. Abou-Jaoudé, “The Goodwin model: behind the Hill function”, PLoS ONE, 8:8 (2013), e69573 | DOI

[24] J. K. Kim, “Protein sequestration versus Hill-type repression in circadian clock models”, IET Syst. Biol., 10:4 (2016), 125–135 | DOI

[25] A. C. Liu, H. G. Tran, E. E. Zhang, A. A. Priest, D. K. Welsh, S. A. Kay, “Redundant function of REVERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms”, PLoS Genet., 4:2 (2008), e1000023 | DOI

[26] P. T. Foteinou, A. Venkataraman, L. J. Francey, R. C. Anafi, J. B. Hogenesch, F. J. Doyle, “Computational and experimental insights into the circadian effects of SIRT1”, Proc. Nat. Acad. Sci. USA, 115:45 (2018), 11643–11648 | DOI

[27] V. P. Golubyatnikov, N. E. Kirillova, “Fazovye portrety modelei dvukh gennykh setei”, Mat. zametki SVFU, 28:1 (2021), 3–11

[28] S. Smeil, “Matematicheskaya model vzaimodeistviya dvukh kletok, ispolzuyuschaya uravnenie Tyuringa”: Marsden Dzh., MakKraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 274–283