Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_4_a2, author = {V. P. Golubyatnikov and O. A. Podkolodnaya and N. L. Podkolodnyi and N. B. Ayupova and N. E. Kirillova and E. V. Yunosheva}, title = {Conditions of existence of cycles in two basic models of circadian oscillator of {Mammalians}}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {39--53}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a2/} }
TY - JOUR AU - V. P. Golubyatnikov AU - O. A. Podkolodnaya AU - N. L. Podkolodnyi AU - N. B. Ayupova AU - N. E. Kirillova AU - E. V. Yunosheva TI - Conditions of existence of cycles in two basic models of circadian oscillator of Mammalians JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 39 EP - 53 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a2/ LA - ru ID - SJIM_2021_24_4_a2 ER -
%0 Journal Article %A V. P. Golubyatnikov %A O. A. Podkolodnaya %A N. L. Podkolodnyi %A N. B. Ayupova %A N. E. Kirillova %A E. V. Yunosheva %T Conditions of existence of cycles in two basic models of circadian oscillator of Mammalians %J Sibirskij žurnal industrialʹnoj matematiki %D 2021 %P 39-53 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a2/ %G ru %F SJIM_2021_24_4_a2
V. P. Golubyatnikov; O. A. Podkolodnaya; N. L. Podkolodnyi; N. B. Ayupova; N. E. Kirillova; E. V. Yunosheva. Conditions of existence of cycles in two basic models of circadian oscillator of Mammalians. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 39-53. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a2/
[1] U. Albrecht, “Timing to perfection: the biology of central and peripheral circadian clocks”, Neuron, 74:2 (2012), 246–260 | DOI
[2] S. A. Newman, G. Forgacs, “Complexity and self-orgatization in biological development and evolution”, Complexity in Chemistry, Biology and Ecology, Springer-Verl., 2005, 49–96 | DOI
[3] B. C. Goodwin, Temporal Organization in Cells; A Dynamic Theory of Cellular Control Processes, Acad. Press, London–N.Y., 1963
[4] B. C. Goodwin, “Oscillatory behavior in enzymatic control processes”, Adv. Enzyme Regul., 3 (1965), 425–438 | DOI
[5] O. A. Podkolodnaya, N. N. Tverdokhleb, N. L. Podkolodnyy, “Computational modeling of the cell autonomous mammalian circadian oscillator”, BMC Systems Biology, 11 (2017), 27–42 | DOI
[6] S. Almeida, M. Chaves, F. Delaunay, “Transcription-based circadian mechanism controls the duration of molecular clock states in response to signaling inputs”, J. Theor. Biology, 484 (2020), 110015 | DOI | Zbl
[7] T. K. Sato, S. Panda, L. J. Miraglia, T. M. Reyes, R. D. Rudic, P. Mcnamara, K. A. Naik, G. A. Fitzgerald, S. A. Kay, J. B. Hogenesch, “A functional genomics strategy reveals Rora as a component of the mammalian circadian clock”, Neuron, 43:4 (2004), 527–537 | DOI
[8] S. Hastings, J. Tyson, D. Webster, “Existebce of periodic solutions for negative feedback cellular control system”, J. Different. Equat., 25 (1977), 39–64 | DOI | Zbl
[9] J. Hofbauer, J. Mallet-Paret, H. L. Smith, “Stable periodic solutions for the hypercycle system”, J. Dynamics Different. Equat., 3:3 (1991), 423–436 | DOI | Zbl
[10] A. A. Akinshin, T. A. Bukharina, V. P. Golubyatnikov, D. P. Furman, “Matematicheskoe modelirovanie vzaimodeistviya dvukh kletok v proneiralnom klastere krylovogo imaginalnogo diska D. melanogaster”, Sib. zhurn. chistoi i prikl. matematiki, 14:4 (2014), 3–10 | Zbl
[11] M. B. Elowitz, S. Leibler, “A synthetic oscillatory network of transcriptional regulators”, Nature, 403 (2000), 335–338 | DOI
[12] Sistemnaya kompyuternaya biologiya, Izd-vo SO RAN, Novosibirsk, 2008
[13] T. A. Bukharina, A. A. Akinshin, V. P. Golubyatnikov, D. P. Furman, “Matematicheskaya i chislennaya model tsentralnogo regulyatornogo kontura sistemy morfogeneza mekhanoretseptorov drozofily”, Sib. zhurn. industr. matematiki, 23:2 (2020), 41–50
[14] L. Glass, J. S. Pasternack, “Stable oscillations in mathematcal models of biological control systems”, J. Math. Biology, 6 (1978), 207–223 | DOI | Zbl
[15] R. Smith, “Orbital stability of ordinary differential equations”, J. Different. Equat., 69 (1987), 265–287 | DOI | Zbl
[16] Yu. A. Gaidov, V. P. Golubyatnikov, “O nekotorykh nelineinykh dinamicheskikh sistemakh, modeliruyuschikh nesimmetrichnye gennye seti”, Sib. zhurn. chistoi i prikl. matematiki, 7:2 (2007), 8–17
[17] Yu. A. Gaidov, V. P. Golubyatnikov, E. Mjolsness, “Topological index of a model of p53-Mdm2 circuit”, Inform. vestn. Vavilovskogo ob-va genetikov i selektsionerov, 13:1 (2009), 160–162
[18] N. E. Kirillova, “Ob invariantnykh poverkhnostyakh v modelyakh gennykh setei”, Sib. zhurn. industr. matematiki, 23:4 (2020), 69–76
[19] D. V. Anosov, Otobrazheniya okruzhnosti, vektornye polya i ikh primeneniya, Izd-vo MTsNMO, M., 2003
[20] R. Abraham, J. Robbins, Transversal Mappings and Flows, W.A. Benjamin, N.Y., 1967 | Zbl
[21] D. V. Anosov, “Remarks concerning hyperbolic sets”, J. Math. Sci., 78:5 (1996), 497–529 | DOI | Zbl
[22] J. S. Griffith, “Mathematics of cellular control processes. I. Negative feedback to one gene”, J. Theor. Biol., 20:2 (1968), 202–208 | DOI
[23] D. Gonze, W. Abou-Jaoudé, “The Goodwin model: behind the Hill function”, PLoS ONE, 8:8 (2013), e69573 | DOI
[24] J. K. Kim, “Protein sequestration versus Hill-type repression in circadian clock models”, IET Syst. Biol., 10:4 (2016), 125–135 | DOI
[25] A. C. Liu, H. G. Tran, E. E. Zhang, A. A. Priest, D. K. Welsh, S. A. Kay, “Redundant function of REVERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms”, PLoS Genet., 4:2 (2008), e1000023 | DOI
[26] P. T. Foteinou, A. Venkataraman, L. J. Francey, R. C. Anafi, J. B. Hogenesch, F. J. Doyle, “Computational and experimental insights into the circadian effects of SIRT1”, Proc. Nat. Acad. Sci. USA, 115:45 (2018), 11643–11648 | DOI
[27] V. P. Golubyatnikov, N. E. Kirillova, “Fazovye portrety modelei dvukh gennykh setei”, Mat. zametki SVFU, 28:1 (2021), 3–11
[28] S. Smeil, “Matematicheskaya model vzaimodeistviya dvukh kletok, ispolzuyuschaya uravnenie Tyuringa”: Marsden Dzh., MakKraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 274–283