Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_3_a9, author = {V. M. Chubich and S. O. Kulabukhova}, title = {Robust parametric identification procedure of stochastic nonlinear continuous-discrete systems}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {138--149}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a9/} }
TY - JOUR AU - V. M. Chubich AU - S. O. Kulabukhova TI - Robust parametric identification procedure of stochastic nonlinear continuous-discrete systems JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 138 EP - 149 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a9/ LA - ru ID - SJIM_2021_24_3_a9 ER -
%0 Journal Article %A V. M. Chubich %A S. O. Kulabukhova %T Robust parametric identification procedure of stochastic nonlinear continuous-discrete systems %J Sibirskij žurnal industrialʹnoj matematiki %D 2021 %P 138-149 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a9/ %G ru %F SJIM_2021_24_3_a9
V. M. Chubich; S. O. Kulabukhova. Robust parametric identification procedure of stochastic nonlinear continuous-discrete systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 138-149. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a9/
[1] G. Kramer, Matematicheskie metody statistiki, Mir, M., 1975
[2] A. A. Borovkov, Matematicheskaya statistika, Nauka, M., 1984
[3] E. Leman, Teoriya tochechnogo otsenivaniya, Nauka, M., 1991
[4] G. I. Ivchenko, Yu. I. Medvedev, Matematicheskaya statistika, LIBROKOM, M., 2014
[5] N. K. Gupta, R. K. Mehra, “Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations”, IEEE Trans. Automatic Control, 19:6 (1974), 774–783 | DOI | Zbl
[6] K. J. Åström, “Maximum likelihood and prediction error methods”, Automatica, 16 (1980), 551–574 | DOI
[7] G. J. Bierman, M. R. Belzer, J. S. Vandercraft, D. W. Porter, “Maximum likelihood estimation using square root information filters”, IEEE Trans. Automatic Control, 35:12 (1990), 1293–1298 | DOI | Zbl
[8] Yu. V. Tsyganova, M. V. Kulikova, “Ob effektivnykh metodakh parametricheskoi identifikatsii lineinykh diskretnykh stokhasticheskikh sistem”, Avtomatika i Telemekhanika, 2012, no. 6, 34–51 | Zbl
[9] D. Boiroux, R. Juhl, H. Madsen, J. B. Jörgensen, “An efficient UD-based algorithm for the computation of maximum likelihood sensitivity of continuous-discrete systems”, IEEE 55 Conf. on Decision and Control (CDC), 2016, 3048–3053
[10] J. Kokkala, A. Solin, S. Särkkä, “Sigma-point filtering and smoothing based parameter estimation in nonlinear dynamic systems”, J. Adv. Information Fusion, 11:1 (2016), 15–30
[11] Z. Sun, Z. Yang, “Study of nonlinear parameter identification using UKF and maximum likelihood method”, IEEE Internat. Conf. on Control Applications, 2010, 671–676
[12] M. Boureghda, T. Bouden, “A deconvolution scheme for the stochastic metabolic/hemodynamic model (sMHM) based on the square root cubature Kalman filter and maximum likelihood estimation”, Biomedical Signal Processing and Control, 45 (2018), 284–304 | DOI
[13] V. M. Chubich, A. E. Prokof'eva, “Parametricheskaya identifikatsiya stokhasticheskikh lineinykh diskretnykh sistem na osnove robastnoi fil'tratsii”, Vestn. Irkutsk. Gos. Tekhn. Un-ta, 22:2 (2018), 84–94
[14] V. M. Chubich, E. V. Filippova, “Parametricheskaya identifikatsiya stokhasticheskikh lineinykh nepreryvno-diskretnykh sistem na osnove robastnoi fil'tratsii”, Izv. Tul'sk. Gos. Un-ta. Tekhnicheskie nauki, 2019, no. 2, 219–225
[15] J. C. Príncipe, Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives, Springer-Verl, N.Y., 2010
[16] G. T. Cinar, J. C. Príncipe, “Hidden state estimation using the correntropy filter with fixed point update and adaptive kernel size”, IEEE World Congress on Computational Intelligence, 2012, 1–6
[17] I. Arasaratnam, S. Haykin, “Cubature Kalman filters”, IEEE Trans. Automatic Control, 54:6 (2009), 1254–1269 | DOI | Zbl
[18] S. Särkkä, A. Solin, “On continuous-discrete cubature Kalman filtering”, Proc. 16 IFAC Symposium on System Identification, 2012, 1221–1226
[19] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Acad. Press, N.Y., 1970 | Zbl
[20] Spravochnik po teorii avtomaticheskogo upravleniya, Nauka, M., 1987
[21] P. Maybeck, Stochastic Models, Estimation, Control, v. 2, Acad. Press, N.Y., 1982 | Zbl
[22] G. Wang, N. Li, Y. Zhang, “Maximum correntropy unscented Kalman and information filters for nonGaussian measurement noise”, J. Franklin Institute, 354:18 (2017), 8659–8677 | DOI | Zbl
[23] T. Kailath, A. Sayed, B. Hassibi, Linear Estimation, Prentice Hall, New Jersey, 2000
[24] E. S. Ahmed, A. I. Volodin, A. A. Hussein, “Robust weighted likelihood estimation of exponential parameters”, IEEE Trans. Reliability, 54:3 (2005), 389–395 | DOI
[25] S. Särkkä, “On unscented Kalman filter for state estimation of continuous-time non-linear systems”, IEEE Trans. Automatic Control, 52:9 (2007), 1631–1641 | DOI | Zbl