The problem of the flow of an ideal fluid with a singular sink at a depression on the bottom
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 101-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is a two-dimensional stationary problem concerning a flow of an ideal incompressible fluid bounded by an impenetrable bottom and a free surface from above. The flow is caused by a singular sink of a given strength that is located at the top of a triangular depression on the bottom. The problem is to determine the shape of the free boundary and the velocity field of the fluid. With the help of a conformal map and the Levi–Civita method, we rewrite the problem as an operator equation in some Hilbert space. We proved that, for the Froude number greater than some particular value, there is a solution of the problem.
Keywords: ideal incompressible fluid, free surface, singular sink. .
@article{SJIM_2021_24_3_a7,
     author = {A. A. Titova},
     title = {The problem of the flow of an ideal fluid with a singular sink at a depression on the bottom},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {101--121},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a7/}
}
TY  - JOUR
AU  - A. A. Titova
TI  - The problem of the flow of an ideal fluid with a singular sink at a depression on the bottom
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 101
EP  - 121
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a7/
LA  - ru
ID  - SJIM_2021_24_3_a7
ER  - 
%0 Journal Article
%A A. A. Titova
%T The problem of the flow of an ideal fluid with a singular sink at a depression on the bottom
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 101-121
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a7/
%G ru
%F SJIM_2021_24_3_a7
A. A. Titova. The problem of the flow of an ideal fluid with a singular sink at a depression on the bottom. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 101-121. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a7/

[1] M. A. Lavrent'ev, B. V. Shabat, Methods of theory of complex variable functions, Nauka, M., 1965 (in Russian)

[2] J. M. Vanden-Broeck, J. B. Keller, “Free surface flow due to a sink”, J. Fluid Mech., 175 (1987), 109–117 | DOI | Zbl

[3] G. C. Hocking, “Cusp-like free-surface flows due to a submerged source or sink in the presence of a flat or sloping bottom”, J. Austr. Math. Soc. Ser. B, 26 (1985), 470–486 | DOI | Zbl

[4] C. R. Dun, G. C. Hocking, “Withdrawal of fluid through a line sink beneath a free surface above a sloping boundary”, J. Engrg. Math., 29 (1995), 1–10 | DOI | Zbl

[5] B. Bouderah, H. Mekias, “Communication and forum: A cybernetic approach to the problem of cusp free-surface flow caused by a line sink on a sloping bottom”, Kybernetes, 31:2 (2002), 305–316 | DOI | Zbl

[6] A. A. Mestnikova, V. N. Starovoitov, “Free-surface potential flow of an ideal fluid due to a singular sink”, J. Phys. Conf. Ser., 722 (2016), 01203 | DOI

[7] A. A. Mestnikova, V. N. Starovoitov, “Steady free surface potential flow of an ideal fluid due to a singular sink on the flat bottom”, Nonlinear Anal. Real World Appl., 49 (2019), 111–136 | DOI | Zbl

[8] A. I. Nekrasov, Exact wave theory of steady-state surface of a heavy liquid, Izd. Akad. Nauk SSSR, M., 1951 (in Russian)

[9] A. I. Nekrasov, “About steady-state waves”, Izv. IVPI, 3 (1921), 52–65 (in Russian) | Zbl

[10] P. I. Plotnikov, J. F. Toland, “Convexity of Stokes waves of extreme form”, Arch. Rat. Mech. Anal., 171 (2004), 349–416 | DOI | Zbl

[11] L. E. Fraenkel, “A constructive existence proof for the extreme Stokes wave”, Arch. Rat. Mech. Anal., 183 (2007), 187–214 | DOI | Zbl

[12] G. Keady, J. Norbury, “On the existence theory for irrotational water waves”, Proc. Math. Cambridge Philos. Soc., 83 (1978), 137–157 | DOI | Zbl

[13] D. V. Maklakov, Nonlinear hydrodynamic problems of potential flows with unknown boundaries, Yanus-K, M., 1997 (in Russian)

[14] A. A. Titova, “On the free boundary form of a flow of an ideal incompressible fluid with a point-wise sink at the vertex of a triangular ledge at the bottom”, Sib. Elektr. Mat. Izv., 18:1 (2021), 207–236 (in Russian) | Zbl

[15] F. D. Gakhov, Boundary value problems, Nauka, M., 1970 (in Russian)

[16] A. V. Bitsadze, Basis of theory of analytical functions of complex variable, Nauka, M., 1969 (in Russian)

[17] V. A. Zorich, Mathematical analysis, izd. MTsNMO, M., 2012