Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_3_a7, author = {A. A. Titova}, title = {The problem of the flow of an ideal fluid with a singular sink at a depression on the bottom}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {101--121}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a7/} }
TY - JOUR AU - A. A. Titova TI - The problem of the flow of an ideal fluid with a singular sink at a depression on the bottom JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 101 EP - 121 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a7/ LA - ru ID - SJIM_2021_24_3_a7 ER -
A. A. Titova. The problem of the flow of an ideal fluid with a singular sink at a depression on the bottom. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 101-121. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a7/
[1] M. A. Lavrent'ev, B. V. Shabat, Methods of theory of complex variable functions, Nauka, M., 1965 (in Russian)
[2] J. M. Vanden-Broeck, J. B. Keller, “Free surface flow due to a sink”, J. Fluid Mech., 175 (1987), 109–117 | DOI | Zbl
[3] G. C. Hocking, “Cusp-like free-surface flows due to a submerged source or sink in the presence of a flat or sloping bottom”, J. Austr. Math. Soc. Ser. B, 26 (1985), 470–486 | DOI | Zbl
[4] C. R. Dun, G. C. Hocking, “Withdrawal of fluid through a line sink beneath a free surface above a sloping boundary”, J. Engrg. Math., 29 (1995), 1–10 | DOI | Zbl
[5] B. Bouderah, H. Mekias, “Communication and forum: A cybernetic approach to the problem of cusp free-surface flow caused by a line sink on a sloping bottom”, Kybernetes, 31:2 (2002), 305–316 | DOI | Zbl
[6] A. A. Mestnikova, V. N. Starovoitov, “Free-surface potential flow of an ideal fluid due to a singular sink”, J. Phys. Conf. Ser., 722 (2016), 01203 | DOI
[7] A. A. Mestnikova, V. N. Starovoitov, “Steady free surface potential flow of an ideal fluid due to a singular sink on the flat bottom”, Nonlinear Anal. Real World Appl., 49 (2019), 111–136 | DOI | Zbl
[8] A. I. Nekrasov, Exact wave theory of steady-state surface of a heavy liquid, Izd. Akad. Nauk SSSR, M., 1951 (in Russian)
[9] A. I. Nekrasov, “About steady-state waves”, Izv. IVPI, 3 (1921), 52–65 (in Russian) | Zbl
[10] P. I. Plotnikov, J. F. Toland, “Convexity of Stokes waves of extreme form”, Arch. Rat. Mech. Anal., 171 (2004), 349–416 | DOI | Zbl
[11] L. E. Fraenkel, “A constructive existence proof for the extreme Stokes wave”, Arch. Rat. Mech. Anal., 183 (2007), 187–214 | DOI | Zbl
[12] G. Keady, J. Norbury, “On the existence theory for irrotational water waves”, Proc. Math. Cambridge Philos. Soc., 83 (1978), 137–157 | DOI | Zbl
[13] D. V. Maklakov, Nonlinear hydrodynamic problems of potential flows with unknown boundaries, Yanus-K, M., 1997 (in Russian)
[14] A. A. Titova, “On the free boundary form of a flow of an ideal incompressible fluid with a point-wise sink at the vertex of a triangular ledge at the bottom”, Sib. Elektr. Mat. Izv., 18:1 (2021), 207–236 (in Russian) | Zbl
[15] F. D. Gakhov, Boundary value problems, Nauka, M., 1970 (in Russian)
[16] A. V. Bitsadze, Basis of theory of analytical functions of complex variable, Nauka, M., 1969 (in Russian)
[17] V. A. Zorich, Mathematical analysis, izd. MTsNMO, M., 2012