Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_3_a6, author = {S. A. Sivak and M. E. Royak and I. M. Stupakov}, title = {On the application of the fast multipole method to the optimization of the boundary element method for the {Helmholtz} equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {83--100}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a6/} }
TY - JOUR AU - S. A. Sivak AU - M. E. Royak AU - I. M. Stupakov TI - On the application of the fast multipole method to the optimization of the boundary element method for the Helmholtz equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 83 EP - 100 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a6/ LA - ru ID - SJIM_2021_24_3_a6 ER -
%0 Journal Article %A S. A. Sivak %A M. E. Royak %A I. M. Stupakov %T On the application of the fast multipole method to the optimization of the boundary element method for the Helmholtz equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2021 %P 83-100 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a6/ %G ru %F SJIM_2021_24_3_a6
S. A. Sivak; M. E. Royak; I. M. Stupakov. On the application of the fast multipole method to the optimization of the boundary element method for the Helmholtz equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 83-100. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a6/
[1] R. N. Simpson, M. A. Scott, M. Taus, D. C. Thomas, H. Lian, “Acoustic isogeometric boundary element analysis”, Computer Meth. Appl. Mech. Engrg., 269 (2014), 265–290 | DOI | Zbl
[2] Z. Liu, M. Majeed, F. Cirak, R. Simpson, “Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces”, Internat. J. Num. Meth. Engrg., 113:9 (2018), 1507–1530 | DOI
[3] H. Harbrecht, M. Moor, “Wavelet boundary element methods: adaptivity and goal-oriented error estimation”, Adv. Finite Element Meth. Appl., 128 (2017), 143–164 | DOI
[4] H. Harbrecht, M. Utzinger, “On adaptive wavelet boundary element methods”, J. Comput. Math., 36:1 (2018), 90–109 | DOI
[5] S. Dahlke, H. Harbrecht, M. Utzinger, M. Weimar, “Adaptive wavelet BEM for boundary integral equations: theory and numerical experiments”, Num. Funct. Anal. Optim., 39:2 (2018), 208–232 | DOI | Zbl
[6] J. Deng, O. Guasch, L. Maxit, L. Zheng, “Transmission loss of plates with multiple embedded acoustic black holes using statistical modal energy distribution analysis”, Mechanical Systems and Signal Processing, 150 (2021) | DOI
[7] S. Rjasanow, L. Weggler, “Matrix valued adaptive cross approximation. Mathematical methods in the applied sciences”, Math. Meth. Appl. Sci., 40:7 (2017), 2522–2531 | DOI | Zbl
[8] M. Kravčenko, J. Zapletal, X. Claeys, M. Merta, “Parallel adaptive cross approximation for the multitrace formulation of scattering problems”, Internat. Conf. Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, 12043, 2019, 141–150 | DOI
[9] M. Kravčenko, M. Merta, J. Zapletal, “Distributed fast boundary element methods for Helmholtz problems”, Appl. Math. Comput., 362 (2019) | DOI | Zbl
[10] T. Takahashi, P. Coulier, E. Darve, “Application of the inverse fast multipole method as a preconditioner in a 3D Helmholtz boundary element method”, J. Comput. Phys., 341 (2017), 406–428 | DOI | Zbl
[11] L. Shen, Y. J. Liu, “An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation”, Comput. Mechanics, 40:3 (2007), 461–472 | DOI | Zbl
[12] Z. Liu, D. Wang, J. Liang, F. Wu, C. Wu, “The fast multi-pole indirect BEM for solving high-frequency seismic wave scattering by three-dimensional superficial irregularities”, Engrg. Analysis with Boundary Elements, 90:2 (2018), 86–99 | DOI | Zbl
[13] L. Chen, S. Marburg, W. Zhao, C. Liu, H. Chen, “Implementation of isogeometric fast multipole boundary element methods for 2D half-space acoustic scattering problems with absorbing boundary condition”, J. Theor. Comput. Acoustics, 27 (2020) | DOI
[14] D. Wilkes, A. Duncan, S. Marburg, “A parallel and broadband Helmholtz FMBEM model for large-scale target strength modeling”, J. Theor. Comput. Acoustics, 28:3 (2020) | DOI
[15] J. Li, Z. Fu, W. Chen, X. Liu, “A dual-level method of fundamental solutions in conjunction with kernelindependent fast multipole method for large-scale isotropic heat conduction problems”, Adv. Appl. Math. Mech., 11:2 (2019), 501–517 | DOI
[16] J. Li, W. Chen, Q. Qin, “A modified dual-level fast multipole boundary element method based on the Burton-Miller formulation for large-scale three-dimensional sound field analysis”, Comput. Meth. Appl. Mech. Engrg., 340 (2018), 121–146 | DOI | Zbl
[17] W. Qu, C. Zheng, Y. Zhang, Y. Gu, F. Wang, “A wideband fast multipole accelerated singular boundary method for three-dimensional acoustic problems”, Computers Structures, 206 (2018), 82–89 | DOI
[18] T. Takahashi, C. Chen, E. Darve, “Parallelization of the inverse fast multipole method with an application to boundary element method”, Comput. Phys. Comm., 247 (2020) | DOI
[19] F. Amlani, S. Chaillat, A. Loseille, “An efficient preconditioner for adaptive fast multipole accelerated boundary element methods to model time-harmonic 3D wave propagation”, Comput. Meth. Appl. Mech. Engrg., 352 (2019), 189–210 | DOI | Zbl
[20] N. A. Gumerov, R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, Maryland, 2005
[21] N. A. Gumerov, R. Duraiswami, Fast, exact, and stable computation of multipole translation and rotation coefficients for the 3-d Helmholtz equation https://drum.lib.umd.edu/bitstream/handle/1903/1141/CS-TR-4264.pdf?sequence=1
[22] Lependin L. F., Akustika, Vyssh. shkola, M., 1978
[23] S. Rjasanow, O. Steinbach, The fast solution of boundary integral equations, Springer Sci. Business Media, 2007 | Zbl
[24] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Acad. Press, N.Y., 2003 | Zbl
[25] M. Stolper, “Computing and compression of the boundary element matrices for the Helmholtz equation”, J. Numer. Math., 12:1 (2004), 55–75 | DOI | Zbl
[26] R. Beatson, L. Greengard, “A short course on fast multipole methods”, Wavelets, multilevel methods and elliptic PDEs, 1 (1997), 1–37 | Zbl
[27] O. Steinbach, Numerical approximation methods for elliptic boundary value problems: finite and boundary elements, Springer Sci. Business Media, 2007
[28] P. Keller, “A method for indefinite integration of oscillatory and singular functions”, Numer. Algorithms, 46:3 (2007), 219–251 | DOI | Zbl
[29] N. V. Nair, A. J. Pray, J. Villa-Giron, B. Shanker, D. R. Wilton, “A singularity cancellation technique for weakly singular integrals on higher order surface descriptions”, IEEE Trans. Antennas and Propagation, 61:4 (2013), 2347–2352 | DOI | Zbl
[30] A. C. A. Vasconcelos, I. Cavalcante, J. Labaki, “On the accuracy of adaptive quadratures in the numerical integration of singular Green's functions for layered media”, Proc. Iberian Latin American Congress on Computational Methods in Engineering, 2017 | DOI
[31] S. Järvenpää, M. Taskinen, P. Ylä-Oijala, “Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra”, Internat. J. Numer. Meth. Engrg., 58:8 (2003), 1149–1165 | DOI | Zbl
[32] E. Wigner, Group Theory: and its Application to the Quantum Mechanics of Atomic Spectra, Elsevier, 2012
[33] A. Buchau, W. M. Rucker, “Preconditioned fast adaptive multipole boundary-element method”, IEEE Trans. Magnetics, 38:2 (2002), 461–464 | DOI