On the application of the fast multipole method to the optimization of the boundary element method for the Helmholtz equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 83-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solving the Helmholtz equation by means of the boundary element method applied in conjunction with the fast multipole method is the subject of this paper. The accuracy analysis is presented for the model problem with known analytics. Also, we present an original approach to the computation of the rotation coefficients for the spherical harmonic decomposition of the multipole series.
Keywords: boundary element method, fast multipole method, the Helmholtz equation.
@article{SJIM_2021_24_3_a6,
     author = {S. A. Sivak and M. E. Royak and I. M. Stupakov},
     title = {On the application of the fast multipole method to the optimization of the boundary element method for the {Helmholtz} equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {83--100},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a6/}
}
TY  - JOUR
AU  - S. A. Sivak
AU  - M. E. Royak
AU  - I. M. Stupakov
TI  - On the application of the fast multipole method to the optimization of the boundary element method for the Helmholtz equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 83
EP  - 100
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a6/
LA  - ru
ID  - SJIM_2021_24_3_a6
ER  - 
%0 Journal Article
%A S. A. Sivak
%A M. E. Royak
%A I. M. Stupakov
%T On the application of the fast multipole method to the optimization of the boundary element method for the Helmholtz equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 83-100
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a6/
%G ru
%F SJIM_2021_24_3_a6
S. A. Sivak; M. E. Royak; I. M. Stupakov. On the application of the fast multipole method to the optimization of the boundary element method for the Helmholtz equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 83-100. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a6/

[1] R. N. Simpson, M. A. Scott, M. Taus, D. C. Thomas, H. Lian, “Acoustic isogeometric boundary element analysis”, Computer Meth. Appl. Mech. Engrg., 269 (2014), 265–290 | DOI | Zbl

[2] Z. Liu, M. Majeed, F. Cirak, R. Simpson, “Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces”, Internat. J. Num. Meth. Engrg., 113:9 (2018), 1507–1530 | DOI

[3] H. Harbrecht, M. Moor, “Wavelet boundary element methods: adaptivity and goal-oriented error estimation”, Adv. Finite Element Meth. Appl., 128 (2017), 143–164 | DOI

[4] H. Harbrecht, M. Utzinger, “On adaptive wavelet boundary element methods”, J. Comput. Math., 36:1 (2018), 90–109 | DOI

[5] S. Dahlke, H. Harbrecht, M. Utzinger, M. Weimar, “Adaptive wavelet BEM for boundary integral equations: theory and numerical experiments”, Num. Funct. Anal. Optim., 39:2 (2018), 208–232 | DOI | Zbl

[6] J. Deng, O. Guasch, L. Maxit, L. Zheng, “Transmission loss of plates with multiple embedded acoustic black holes using statistical modal energy distribution analysis”, Mechanical Systems and Signal Processing, 150 (2021) | DOI

[7] S. Rjasanow, L. Weggler, “Matrix valued adaptive cross approximation. Mathematical methods in the applied sciences”, Math. Meth. Appl. Sci., 40:7 (2017), 2522–2531 | DOI | Zbl

[8] M. Kravčenko, J. Zapletal, X. Claeys, M. Merta, “Parallel adaptive cross approximation for the multitrace formulation of scattering problems”, Internat. Conf. Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, 12043, 2019, 141–150 | DOI

[9] M. Kravčenko, M. Merta, J. Zapletal, “Distributed fast boundary element methods for Helmholtz problems”, Appl. Math. Comput., 362 (2019) | DOI | Zbl

[10] T. Takahashi, P. Coulier, E. Darve, “Application of the inverse fast multipole method as a preconditioner in a 3D Helmholtz boundary element method”, J. Comput. Phys., 341 (2017), 406–428 | DOI | Zbl

[11] L. Shen, Y. J. Liu, “An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation”, Comput. Mechanics, 40:3 (2007), 461–472 | DOI | Zbl

[12] Z. Liu, D. Wang, J. Liang, F. Wu, C. Wu, “The fast multi-pole indirect BEM for solving high-frequency seismic wave scattering by three-dimensional superficial irregularities”, Engrg. Analysis with Boundary Elements, 90:2 (2018), 86–99 | DOI | Zbl

[13] L. Chen, S. Marburg, W. Zhao, C. Liu, H. Chen, “Implementation of isogeometric fast multipole boundary element methods for 2D half-space acoustic scattering problems with absorbing boundary condition”, J. Theor. Comput. Acoustics, 27 (2020) | DOI

[14] D. Wilkes, A. Duncan, S. Marburg, “A parallel and broadband Helmholtz FMBEM model for large-scale target strength modeling”, J. Theor. Comput. Acoustics, 28:3 (2020) | DOI

[15] J. Li, Z. Fu, W. Chen, X. Liu, “A dual-level method of fundamental solutions in conjunction with kernelindependent fast multipole method for large-scale isotropic heat conduction problems”, Adv. Appl. Math. Mech., 11:2 (2019), 501–517 | DOI

[16] J. Li, W. Chen, Q. Qin, “A modified dual-level fast multipole boundary element method based on the Burton-Miller formulation for large-scale three-dimensional sound field analysis”, Comput. Meth. Appl. Mech. Engrg., 340 (2018), 121–146 | DOI | Zbl

[17] W. Qu, C. Zheng, Y. Zhang, Y. Gu, F. Wang, “A wideband fast multipole accelerated singular boundary method for three-dimensional acoustic problems”, Computers Structures, 206 (2018), 82–89 | DOI

[18] T. Takahashi, C. Chen, E. Darve, “Parallelization of the inverse fast multipole method with an application to boundary element method”, Comput. Phys. Comm., 247 (2020) | DOI

[19] F. Amlani, S. Chaillat, A. Loseille, “An efficient preconditioner for adaptive fast multipole accelerated boundary element methods to model time-harmonic 3D wave propagation”, Comput. Meth. Appl. Mech. Engrg., 352 (2019), 189–210 | DOI | Zbl

[20] N. A. Gumerov, R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, Maryland, 2005

[21] N. A. Gumerov, R. Duraiswami, Fast, exact, and stable computation of multipole translation and rotation coefficients for the 3-d Helmholtz equation https://drum.lib.umd.edu/bitstream/handle/1903/1141/CS-TR-4264.pdf?sequence=1

[22] Lependin L. F., Akustika, Vyssh. shkola, M., 1978

[23] S. Rjasanow, O. Steinbach, The fast solution of boundary integral equations, Springer Sci. Business Media, 2007 | Zbl

[24] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Acad. Press, N.Y., 2003 | Zbl

[25] M. Stolper, “Computing and compression of the boundary element matrices for the Helmholtz equation”, J. Numer. Math., 12:1 (2004), 55–75 | DOI | Zbl

[26] R. Beatson, L. Greengard, “A short course on fast multipole methods”, Wavelets, multilevel methods and elliptic PDEs, 1 (1997), 1–37 | Zbl

[27] O. Steinbach, Numerical approximation methods for elliptic boundary value problems: finite and boundary elements, Springer Sci. Business Media, 2007

[28] P. Keller, “A method for indefinite integration of oscillatory and singular functions”, Numer. Algorithms, 46:3 (2007), 219–251 | DOI | Zbl

[29] N. V. Nair, A. J. Pray, J. Villa-Giron, B. Shanker, D. R. Wilton, “A singularity cancellation technique for weakly singular integrals on higher order surface descriptions”, IEEE Trans. Antennas and Propagation, 61:4 (2013), 2347–2352 | DOI | Zbl

[30] A. C. A. Vasconcelos, I. Cavalcante, J. Labaki, “On the accuracy of adaptive quadratures in the numerical integration of singular Green's functions for layered media”, Proc. Iberian Latin American Congress on Computational Methods in Engineering, 2017 | DOI

[31] S. Järvenpää, M. Taskinen, P. Ylä-Oijala, “Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra”, Internat. J. Numer. Meth. Engrg., 58:8 (2003), 1149–1165 | DOI | Zbl

[32] E. Wigner, Group Theory: and its Application to the Quantum Mechanics of Atomic Spectra, Elsevier, 2012

[33] A. Buchau, W. M. Rucker, “Preconditioned fast adaptive multipole boundary-element method”, IEEE Trans. Magnetics, 38:2 (2002), 461–464 | DOI