Mathematical simulation of turbulent combustion of carbon in the problems of white dwarf mergers and explosions of the type Ia supernovae
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 30-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Type Ia supernovae play a key role in astrophysics, but the study of the mechanisms of their explosion is still incomplete. The mathematical simulation apparatus is the main one for studying known and all potentially new scenarios of explosion of the type Ia supernovae. All scenarios are based on the nuclear combustion of the white dwarf material, first of all, the nuclear combustion of carbon, and the subsequent detonation with the supernova explosion. For simulation of the explosion of type Ia supernovae, a subgrid model of static carbon combustion is used. This model does not take into account the previous evolution and dynamics of white dwarfs, which leads to lower values of the combustion energy and, consequently, the supernova explosion energy. A mathematical model of the turbulent combustion of carbon is proposed, which more adequately describes the material combustion taking into account the white dwarfs dynamics. Using computational experiments, it is shown that the supersonic turbulent combustion allows increasing the explosion energy by several times. This is achieved by «pumping» the kinetic energy obtained due to the nonzero velocity dispersion into internal energy and by more active course of nuclear reactions of the alpha-chain from carbon to iron and nickel. In the future, the constructed model will be used as a subgrid model of the combustion of the white dwarf material.
Keywords: computational astrophysics, computational hydrodynamics, type Ia supernovae. .
@article{SJIM_2021_24_3_a2,
     author = {I. M. Kulikov},
     title = {Mathematical simulation of turbulent combustion of carbon in the problems of white dwarf mergers and explosions of the type {Ia} supernovae},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {30--38},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a2/}
}
TY  - JOUR
AU  - I. M. Kulikov
TI  - Mathematical simulation of turbulent combustion of carbon in the problems of white dwarf mergers and explosions of the type Ia supernovae
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 30
EP  - 38
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a2/
LA  - ru
ID  - SJIM_2021_24_3_a2
ER  - 
%0 Journal Article
%A I. M. Kulikov
%T Mathematical simulation of turbulent combustion of carbon in the problems of white dwarf mergers and explosions of the type Ia supernovae
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 30-38
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a2/
%G ru
%F SJIM_2021_24_3_a2
I. M. Kulikov. Mathematical simulation of turbulent combustion of carbon in the problems of white dwarf mergers and explosions of the type Ia supernovae. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 30-38. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a2/

[1] L. A. L. Da Silva, “The classification of supernovae”, Astrophysics and Space Sci, 202 (1993), 215–236 | DOI

[2] E. Churazov et al., “Cobalt-56 $\gamma$-ray emission lines from the type Ia supernova 2014J”, Nature, 512 (2014), 406–408 | DOI

[3] S. Perlmutter et al., “Measurements of the cosmological parameters $\Omega$ and $\Lambda$ from the first seven supernovae at $z \geqslant 0.35$”, Astrophysical J., 483 (1997), 565–581 | DOI

[4] S. Perlmutter et al., “Measurements of $\Omega$ and $\Lambda$ from 42 high-redshift supernovae”, Astrophysical J., 517 (1999), 565–586 | DOI

[5] W. Hillebrandt, J. Niemeyer, “Type Ia supernova explosion models”, Ann. Rev. Astronomy and Astrophysics, 38 (2000), 191–230 | DOI

[6] I. Iben, A. Tutukov, “Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass”, Astrophysical J. Supplement Ser., 54 (1984), 335–372 | DOI

[7] C. Raskin, F. X. Timmes, E. Scannapieco, S. Diehl, C. Fryer, “On Type Ia supernovae from the collisions of two white dwarfs”, Monthly Notices of the Royal Astronomical Soc., 399 (2009), L156–L159 | DOI

[8] S. Rosswog, D. Kasen, J. Guillochon, E. Ramirez-Ruiz, “Collisions of white dwarfs as a new progenitor channel for type Ia supernovae”, Astrophysical J., 705 (2009), L128–L132 | DOI

[9] P. Loren-Aguilar, J. Isern, E. Garcia-Berro, “Smoothed particle hydrodynamics simulations of white dwarf collisions and close encounters”, Monthly Notices of the Royal Astronomical Soc., 406 (2010), 2749–2763 | DOI

[10] R. Pakmor, Kromer M, F. Ropke, S. Sim, A. Ruiter, W. Hillebrandt, “Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass $\approx 0,9 M_{circledcirc}$”, Nature, 463 (2010), 61–64 | DOI

[11] A. Tanikawa, N. Nakasato, Y. Sato, K. Nomoto, K. Maeda, I. Hachisu, “Hydrodynamical evolution of merging carbon-oxygen white dwarfs: their pre-supernova structure and observational counterparts”, Astrophysical J., 807 (2015), 40 | DOI

[12] R. Kashyap, R. Fisher, E. Garcia-Berro, G. Aznar-Siguan, S. Ji, P. Loren-Aguilar, “Spiral instability can drive thermonuclear explosions in binary white dwarf mergers”, Astrophysical J. Letters, 800 (2015), L7 | DOI

[13] R. Kashyap, T. Haque, P. Loren-Aguilar, E. Garcia-Berro, R. Fisher, “Double-degenerate carbon-oxygen and oxygen-neon white dwarf mergers: a new mechanism for faint and rapid type Ia supernovae”, Astrophysical J., 869 (2018), 140 | DOI

[14] D. Fenn, T. Plewa, A. Gawryszczak, “No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers”, Monthly Notices of the Royal Astronomical Soc., 462 (2016), 2486–2505 | DOI

[15] J. Guillochon, M. Dan, E. Ramirez-Ruiz, S. Rosswog, “Surface detonations in double degenerate binary systems triggered by accretion stream instabilities”, Astrophysical J. Letters, 709 (2010), L64–L69 | DOI

[16] A. Tanikawa, “High-resolution hydrodynamic simulation of tidal detonation of a helium white dwarf by an intermediate mass black hole”, Astrophysical J., 858 (2018), 26 | DOI

[17] J. Whelan, I. Iben, “Binaries and supernovae of type I”, Astrophysical J., 186 (1973), 1007–1014 | DOI

[18] R. Fisher, P. Mozumdar, G. Casabona, “Carbon detonation initiation in turbulent electron-degenerate matter”, Astrophysical J., 876 (2019), 64 | DOI

[19] W. Arnett, “A possible model of supernovae: Detonation of 12C”, Astrophysics and Space Sci., 5 (1969), 180–212, 12 pp. | DOI

[20] K. Nomoto, D. Sugimoto, S. Neo, “Carbon deflagration supernova, an alternative to carbon detonation”, Astrophysics and Space Sci., 39 (1976), L37–L42 | DOI

[21] A. M. Khokhlov, “The structure of detonation waves in supernovae”, Monthly Notices of the Royal Astronomical Soc., 239 (1989), 785–808 | DOI | Zbl

[22] I. Kulikov, I. Chernykh, A. Tutukov, “A new hydrodynamic code with explicit vectorization instructions optimizations, dedicated to the numerical simulation of astrophysical gas flow. I. Numerical method, tests and model problems”, Astrophysical J. Supplement Ser., 243 (2019), 4 | DOI

[23] I. Kulikov, “A new code for the numerical simulation of relativistic flows on supercomputers by means of a low-dissipation scheme”, Computer Physics Comm., 257 (2020), 107532 | DOI

[24] F. X. Timmes, D. Arnett, “The accuracy, consistency, and speed of five equations of state for stellar hydrodynamics”, Astrophysical J. Supplement Ser., 125 (1999), 277–294 | DOI

[25] M. Steinmetz, E. Muller, W. Hillebrandt, “Carbon detonations in rapidly rotating white dwarfs”, Astronomy Astrophysics, 254 (1992), 177–190

[26] W. Fowler, G. Caughlan, B. Zimmerman, “Thermonuclear Reaction Rates, II”, Ann. Rev. of Astronomy and Astrophysics, 13 (1975), 69–112 | DOI

[27] A. Khokhlov, “Thermonuclear burning and the explosion of degenerate matter in supernovae”, Soviet Scientific Reviews. Section E. Astrophysics and Space Physics Reviews, 8 (1989), 1–75

[28] A. V. Alexandrov, L. W. Dorodnicyn, A. P. Duben, “Generation of three-dimensional homogeneous isotropic turbulent velocity fields using the randomized spectral method”, Math. Models and Comput. Simulations, 12 (2020), 388–396 | DOI