System of integro-differential equations of convolution type with power nonlinearity
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 5-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of weighted metrics in the cone of the space of continuous functions is used to prove a global theorem on the existence and uniqueness of a nonnegative nontrivial solution for a system of integro-differential equations of convolution type with power nonlinearity. It is shown that the solution can be found by the method of successive approximations of the Picard type and exact a priori estimates are obtained for it.
Keywords: system of integro-differential equations, power nonlinearity.
Mots-clés : convolution
@article{SJIM_2021_24_3_a0,
     author = {S. N. Askhabov},
     title = {System of integro-differential equations of convolution type with power nonlinearity},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - System of integro-differential equations of convolution type with power nonlinearity
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 5
EP  - 18
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a0/
LA  - ru
ID  - SJIM_2021_24_3_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T System of integro-differential equations of convolution type with power nonlinearity
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 5-18
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a0/
%G ru
%F SJIM_2021_24_3_a0
S. N. Askhabov. System of integro-differential equations of convolution type with power nonlinearity. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 5-18. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a0/