Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_3_a0, author = {S. N. Askhabov}, title = {System of integro-differential equations of convolution type with power nonlinearity}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {5--18}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a0/} }
TY - JOUR AU - S. N. Askhabov TI - System of integro-differential equations of convolution type with power nonlinearity JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 5 EP - 18 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a0/ LA - ru ID - SJIM_2021_24_3_a0 ER -
S. N. Askhabov. System of integro-differential equations of convolution type with power nonlinearity. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 5-18. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a0/
[1] S. N. Askhabov, N. K. Karapetyants, A. Ya. Yakubov, “Integral equations of convolution type with power nonlinearity and systems of such equations”, Dokl. Math., 41:2 (1990), 323–327 | Zbl
[2] S. N. Askhabov, M. A. Betilgiriev, “Nonlinear integral equations of convolution type with almost increasing kernels in cones”, Differ. Equat., 27:2 (1991), 234–242 | Zbl
[3] S. N. Askhabov, Nonlinear Convolution Type Equations, Fizmatlit, M., 2009 (in Russian)
[4] W. Okrasinski, “On the existence and uniqueness of non-negative solutions of a certain non-linear convolution equation”, Ann. Polon. Math., 36:1 (1976), 61–72 | DOI
[5] W. Okrasinski, “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74
[6] J. J. Keller, “Propagation of simple nonlinear waves in gas filled tubes with friction”, Z. Angew. Math. Phys., 32:2 (1981), 170–181 | DOI | Zbl
[7] A. N. Tikhonov, “On the cooling of bodies during radiation, following the Stefan-Boltzmann law”, Izv. AN USSR, Department of Mathematics and Natural Sciences, Series of Geogr. And Geophysics, 3 (1937), 461–479 (in Russian)
[8] G. B. Ermentrout, J. D. Cowan, “Secondary bifurcation in neuronal nets”, SIAM J. Appl. Math., 39:2 (1980), 323–340 | DOI | Zbl
[9] L. v. Wolfersdorf, “Eininge klassen quadratischer integralgleichungen”, Sitz. Sachs. Akad. Wiss. Leipzig. Math. naturwiss. Klasse, 128:2 (2000), 1–34
[10] H. Brunner, Volterra Integral Equations: an Introduction to the Theory and Applications, Univ. Press, Cambridge, 2017
[11] R. Edvards, Functional Analysis: Theory and Applications, Holt, Rinehart, and Winston, N.Y., 1965
[12] S. N. Askhabov, “Integro-differential equation of the convolution type with a power nonlinearity and an inhomogeneity in the linear part”, Differ. Equat., 56:6 (2020), 775–784 | DOI | Zbl
[13] S. N. Askhabov, N. K. Karapetyants, “Discrete equations of convolution type with monotone nonlinearity”, Differ. Equat., 25:10 (1989), 1255–1261 | Zbl
[14] S. N. Askhabov, N. K. Karapetian, “Convolution type discrete equations with monotonous nonlinearity in comples spaces”, J. Integral Equat. Math. Phys., 1:1 (1992), 44–66
[15] S. N. Askhabov, N. K. Karapetyants, “Discrete equations of convolution type with monotone nonlinearity in complex spaces”, Dokl. Math., 45:1 (1992), 206–210 | Zbl