Predominantly unidirectional flow of a viscous liquid
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 126-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the problem of the flow of a viscous liquid in the presence of solid bodies (namely, the two walls and a plate whose boundary is permeable for the liquid) under some influences periodical in time. The formulation of the problem includes the equation of Navier–Stokes, the equation of continuity, and the conditions at the solid boundaries of the liquid. The new hydro-mechanical effect is revealed which consists in the following: in the absence of a predominant direction in space, the free parts of the hydro-mechanical system (i.e., the liquid layers) perform the unidirectional steady motion at a background of oscillations.
Mots-clés : viscous liquid, oscillations
Keywords: permeable boundary, absence of a predominant direction, steady motion. .
@article{SJIM_2021_24_2_a9,
     author = {V. L. Sennitskii},
     title = {Predominantly unidirectional flow of a viscous liquid},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {126--133},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a9/}
}
TY  - JOUR
AU  - V. L. Sennitskii
TI  - Predominantly unidirectional flow of a viscous liquid
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 126
EP  - 133
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a9/
LA  - ru
ID  - SJIM_2021_24_2_a9
ER  - 
%0 Journal Article
%A V. L. Sennitskii
%T Predominantly unidirectional flow of a viscous liquid
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 126-133
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a9/
%G ru
%F SJIM_2021_24_2_a9
V. L. Sennitskii. Predominantly unidirectional flow of a viscous liquid. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 126-133. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a9/

[1] V. N. Chelomei, “Paradoxes in mechanics caused by vibrations”, Dokl. Akad. Nauk SSSR, 270:1 (1983), 62–67 (in Russian)

[2] V. L. Sennitskii, “Motion of a circular cylinder in a vibrating liquid”, J. Appl. Mech. Tech. Phys., 26:5 (1985), 630–634

[3] V. L. Sennitskii, “Motion of a sphere in a liquid caused by vibrations of another sphere”, J. Appl. Mech. Tech. Phys., 27:4 (1986), 542–547 | MR | MR

[4] B. A. Lugovtsov, V. L. Sennitskii, “Motion of a body in a vibrating liquid”, Soviet Phys. Dokl., 31 (1986), 530–531 | Zbl

[5] D. V. Lyubimov, T. P. Lyubimova, A. A. Cherepanov, “On the motion of a solid body in a vibrating fluid”, Convective Flows, Perm. Ped. Inst., Perm, 1987, 61–71 (in Russian)

[6] V. L. Sennitskii, “Motion of a gas bubble in a viscous vibrating liquid”, J. Appl. Mech. Tech. Phys., 29:6 (1988), 865–870 | DOI | MR

[7] V. L. Sennitskii, “Predominantly unidirectional motion of a gas bubble in a vibrating liquid”, Dokl. Akad. Nauk SSSR, 319:1 (1991), 117–119 (in Russian)

[8] V. L. Sennitskii, “Predominantly unidirectional motion of a compressible solid body in a vibrating liquid”, J. Appl. Mech. Tech. Phys., 34:1 (1993), 96–97 | DOI | MR

[9] V. L. Sennitskii, “On motion of inclusions in uniformly and non-uniformly vibrating liquid”, Intern. workshop on G-jitter, Proc., Clarkson Univ., Potsdam (USA), 1993, 178–186

[10] D. V. Lyubimov, “New approach in the vibrational convection theory”, Proc. 14 IMACs Congress on Computational and Applied Mathematics, Georgia Institute of Technonogy, Atlanta, Georgia, USA, 1994, 59–68

[11] D. V. Lyubimov, “Thermovibrational flows in nonuniform systems”, Microgravity Quarterly, 4:1 (1994), 221–225

[12] D. V. Lyubimov, A. V. Perminov, A. A. Cherepanov, “Generation of averaged flows in a vibrational field near the interface between media”, Vibration Effects in Hydrodynamics, Perm. Ped. Inst., Perm, 1998, 204–221 (in Russian)

[13] O. M. Lavrenteva, “On the motion of particles in non-uniformly vibrating liquid”, Europ. J. Appl. Math., 10:3 (1999), 251–263 | DOI | MR | Zbl

[14] V. L. Sennitskii, “Motion of a ball in a liquid in the presence of a wall under oscillatory influences”, Prikl. Mekh. i Tekhn. Fiz., 40:4 (1999), 125–132 (in Russian) | MR

[15] V. L. Sennitskii, “Motion of a pulsating solid body in an oscillating viscous liquid”, J. Appl. Mech. Tech. Phys., 42:1 (2001), 72–76 | DOI | MR | Zbl

[16] D. V. Lyubimov, T. P. Lyubimova, A. A. Cherepanov, Dynamics of separation surfaces in vibrating fields, Fizmatlit, M., 2003 (in Russian)

[17] S. Hassan, T. P. Lyubimova, D. V. Lyubimov, M. Kawaji, “Motion of a sphere suspended in a vibrating liquid-filled container”, J. Appl. Mech., 73:1 (2006), 72–78 | DOI | MR | Zbl

[18] V. L. Sennitskii, “Motion of an inclusion in uniformly and nonuniformly vibrating liquids”, J. Appl. Mech. Tech. Phys., 48:1 (2007), 65–70 | DOI | MR | Zbl

[19] A. A. Ivanova, V. G. Kozlov, A. F. Kuzaev, “Vibrational interaction of a spherical body with the boundaries of a cavity”, Izv. Ross. Akad. Nauk. Mech. Zhidk. i Gaza, 2008, no. 2, 31–40 (in Russian)

[20] V. L. Sennitskii, “Oscillatory motion of an inhomogeneous solid sphere in a vibrating liquid”, J. Appl. Mech. Tech. Phys., 50:6 (2009), 936–943 | DOI | MR | Zbl

[21] D. V. Lyubimov, A. Y. Baydin, T. P. Lyubimova, “Particle dynamics in a fluid under high frequency vibrations of linear polarization”, Microgravity Sci. Technology, 25 (2013), 121–126 | DOI

[22] O. S. Pyatigorskaya, V. L. Sennitskii, “Motion of solid particles in an oscillating liquid”, J. Appl. Mech. Tech. Phys., 54:3 (2013), 404–407 | DOI | MR | Zbl

[23] A. A. Alabuzhev, “Behavior of a cylindrical bubble under the influence of vibrations”, Vychisl. Mekh. Sploshn. Sred, 7:2 (2014), 151–161 (in Russian)

[24] O. A. Vlasova, V. G. Kozlov, “The repulsion of flat body from the wall of vibrating container filled with liquid”, Microgravity Sci. Technology, 27 (2015), 297–303 | DOI

[25] V. L. Sennitskii, “On a prescribed orientation of a solid inclusion in a viscous liquid”, Sibir. Zh. Indust. Mat., 18:1 (2015), 123–128 (in Russian) | MR | Zbl

[26] V. L. Sennitskii, “Predominantly unidirectional rotation of a solid body and a viscous liquid”, J. Appl. Ind. Math., 11:2 (2017), 284–288 | DOI | DOI | MR | Zbl

[27] V. V. Konovalov, T. P. Lyubimova, “Numerical study of the influence of vibrations on the interaction in an ensemble of gas bubbles and solid particles in a liquid”, Vychisl. Mekh. Sploshn. Sred, 12:1 (2019), 48–56 (in Russian) | DOI

[28] V. L. Sennitskii, “Predominantly unidirectional rotation of a viscous liquid with a free boundary”, Thermophysics and Aeromechanics, 27:1 (2020), 157–160 | DOI | MR

[29] V. L. Sennitskii, “Movement of inclusions in an oscillating fluid”, Sibir. Fiz. Zh., 1995, no. 4, 18–26 (in Russian)

[30] V. L. Sennitskii, “Paradoxical motion of a liquid”, Mezhdunarodn. Zh. Prikl. i Fundam. Issled., 2017, no. 8-1, 28–33 (in Russian) | DOI

[31] N. N. Bogolyubov, Yu. A. Mitropol-skii, Asymptotic methods in the theory of nonlinear oscillations, Fizmatlit, M., 1958 (in Russian) | MR

[32] A. Naifeh, Perturbation Methods, Wiley Sons, N.Y., 1973 | MR

[33] V. L. Sennitskii, “Force interaction of a sphere and a viscous fluid in the presence of a wall”, J. Appl. Mech. Tech. Phys., 41:1 (2000), 50–55 | DOI | MR | MR | Zbl