Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_2_a9, author = {V. L. Sennitskii}, title = {Predominantly unidirectional flow of a viscous liquid}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {126--133}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a9/} }
V. L. Sennitskii. Predominantly unidirectional flow of a viscous liquid. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 126-133. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a9/
[1] V. N. Chelomei, “Paradoxes in mechanics caused by vibrations”, Dokl. Akad. Nauk SSSR, 270:1 (1983), 62–67 (in Russian)
[2] V. L. Sennitskii, “Motion of a circular cylinder in a vibrating liquid”, J. Appl. Mech. Tech. Phys., 26:5 (1985), 630–634
[3] V. L. Sennitskii, “Motion of a sphere in a liquid caused by vibrations of another sphere”, J. Appl. Mech. Tech. Phys., 27:4 (1986), 542–547 | MR | MR
[4] B. A. Lugovtsov, V. L. Sennitskii, “Motion of a body in a vibrating liquid”, Soviet Phys. Dokl., 31 (1986), 530–531 | Zbl
[5] D. V. Lyubimov, T. P. Lyubimova, A. A. Cherepanov, “On the motion of a solid body in a vibrating fluid”, Convective Flows, Perm. Ped. Inst., Perm, 1987, 61–71 (in Russian)
[6] V. L. Sennitskii, “Motion of a gas bubble in a viscous vibrating liquid”, J. Appl. Mech. Tech. Phys., 29:6 (1988), 865–870 | DOI | MR
[7] V. L. Sennitskii, “Predominantly unidirectional motion of a gas bubble in a vibrating liquid”, Dokl. Akad. Nauk SSSR, 319:1 (1991), 117–119 (in Russian)
[8] V. L. Sennitskii, “Predominantly unidirectional motion of a compressible solid body in a vibrating liquid”, J. Appl. Mech. Tech. Phys., 34:1 (1993), 96–97 | DOI | MR
[9] V. L. Sennitskii, “On motion of inclusions in uniformly and non-uniformly vibrating liquid”, Intern. workshop on G-jitter, Proc., Clarkson Univ., Potsdam (USA), 1993, 178–186
[10] D. V. Lyubimov, “New approach in the vibrational convection theory”, Proc. 14 IMACs Congress on Computational and Applied Mathematics, Georgia Institute of Technonogy, Atlanta, Georgia, USA, 1994, 59–68
[11] D. V. Lyubimov, “Thermovibrational flows in nonuniform systems”, Microgravity Quarterly, 4:1 (1994), 221–225
[12] D. V. Lyubimov, A. V. Perminov, A. A. Cherepanov, “Generation of averaged flows in a vibrational field near the interface between media”, Vibration Effects in Hydrodynamics, Perm. Ped. Inst., Perm, 1998, 204–221 (in Russian)
[13] O. M. Lavrenteva, “On the motion of particles in non-uniformly vibrating liquid”, Europ. J. Appl. Math., 10:3 (1999), 251–263 | DOI | MR | Zbl
[14] V. L. Sennitskii, “Motion of a ball in a liquid in the presence of a wall under oscillatory influences”, Prikl. Mekh. i Tekhn. Fiz., 40:4 (1999), 125–132 (in Russian) | MR
[15] V. L. Sennitskii, “Motion of a pulsating solid body in an oscillating viscous liquid”, J. Appl. Mech. Tech. Phys., 42:1 (2001), 72–76 | DOI | MR | Zbl
[16] D. V. Lyubimov, T. P. Lyubimova, A. A. Cherepanov, Dynamics of separation surfaces in vibrating fields, Fizmatlit, M., 2003 (in Russian)
[17] S. Hassan, T. P. Lyubimova, D. V. Lyubimov, M. Kawaji, “Motion of a sphere suspended in a vibrating liquid-filled container”, J. Appl. Mech., 73:1 (2006), 72–78 | DOI | MR | Zbl
[18] V. L. Sennitskii, “Motion of an inclusion in uniformly and nonuniformly vibrating liquids”, J. Appl. Mech. Tech. Phys., 48:1 (2007), 65–70 | DOI | MR | Zbl
[19] A. A. Ivanova, V. G. Kozlov, A. F. Kuzaev, “Vibrational interaction of a spherical body with the boundaries of a cavity”, Izv. Ross. Akad. Nauk. Mech. Zhidk. i Gaza, 2008, no. 2, 31–40 (in Russian)
[20] V. L. Sennitskii, “Oscillatory motion of an inhomogeneous solid sphere in a vibrating liquid”, J. Appl. Mech. Tech. Phys., 50:6 (2009), 936–943 | DOI | MR | Zbl
[21] D. V. Lyubimov, A. Y. Baydin, T. P. Lyubimova, “Particle dynamics in a fluid under high frequency vibrations of linear polarization”, Microgravity Sci. Technology, 25 (2013), 121–126 | DOI
[22] O. S. Pyatigorskaya, V. L. Sennitskii, “Motion of solid particles in an oscillating liquid”, J. Appl. Mech. Tech. Phys., 54:3 (2013), 404–407 | DOI | MR | Zbl
[23] A. A. Alabuzhev, “Behavior of a cylindrical bubble under the influence of vibrations”, Vychisl. Mekh. Sploshn. Sred, 7:2 (2014), 151–161 (in Russian)
[24] O. A. Vlasova, V. G. Kozlov, “The repulsion of flat body from the wall of vibrating container filled with liquid”, Microgravity Sci. Technology, 27 (2015), 297–303 | DOI
[25] V. L. Sennitskii, “On a prescribed orientation of a solid inclusion in a viscous liquid”, Sibir. Zh. Indust. Mat., 18:1 (2015), 123–128 (in Russian) | MR | Zbl
[26] V. L. Sennitskii, “Predominantly unidirectional rotation of a solid body and a viscous liquid”, J. Appl. Ind. Math., 11:2 (2017), 284–288 | DOI | DOI | MR | Zbl
[27] V. V. Konovalov, T. P. Lyubimova, “Numerical study of the influence of vibrations on the interaction in an ensemble of gas bubbles and solid particles in a liquid”, Vychisl. Mekh. Sploshn. Sred, 12:1 (2019), 48–56 (in Russian) | DOI
[28] V. L. Sennitskii, “Predominantly unidirectional rotation of a viscous liquid with a free boundary”, Thermophysics and Aeromechanics, 27:1 (2020), 157–160 | DOI | MR
[29] V. L. Sennitskii, “Movement of inclusions in an oscillating fluid”, Sibir. Fiz. Zh., 1995, no. 4, 18–26 (in Russian)
[30] V. L. Sennitskii, “Paradoxical motion of a liquid”, Mezhdunarodn. Zh. Prikl. i Fundam. Issled., 2017, no. 8-1, 28–33 (in Russian) | DOI
[31] N. N. Bogolyubov, Yu. A. Mitropol-skii, Asymptotic methods in the theory of nonlinear oscillations, Fizmatlit, M., 1958 (in Russian) | MR
[32] A. Naifeh, Perturbation Methods, Wiley Sons, N.Y., 1973 | MR
[33] V. L. Sennitskii, “Force interaction of a sphere and a viscous fluid in the presence of a wall”, J. Appl. Mech. Tech. Phys., 41:1 (2000), 50–55 | DOI | MR | MR | Zbl