Mathematical simulation of the distribution of the electron beam current during pulsed heating of a metal target
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 97-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a model of the current distribution during heating of the surface of a tungsten sample under pulsed exposure to an electron beam. The model is based on solving the equations of electrodynamics and the two-phase Stefan problem for calculating the temperature in the sample region using a cylindrical coordinate system. The model parameters were taken from experiments at the «Beam of Electrons for materials Test Applications» (BETA) stand created at the Budker Institute of Nuclear Physics. A particular case of axial symmetry is considered without taking the electromotive forces into account. The current is considered as a possible source of rotation of the substance which is observed in the experiment. The values of the current and the acceleration of matter at a surface temperature of over $6000$ K were obtained. The results of the performed simulation show that, to obtain an acceleration capable of initiating the experimentally observed rotation of the melt, it is necessary to take into account some alternative mechanisms of creating a current in the system with consideration of the evaporation of tungsten above the plate.
Keywords: mathematical simulation, potential of current, distribution of electron beam current, rotation of tungsten melt, method of upper relaxation.
@article{SJIM_2021_24_2_a6,
     author = {G. G. Lazareva and V. A. Popov and A. S. Arakcheev and A. V. Burdakov and I. V. Shwab and V. L. Vaskevich and A. G. Maksimova and N. E. Ivashin and I. P. Oksogoeva},
     title = {Mathematical simulation of the distribution of the electron beam current during pulsed heating of a metal target},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a6/}
}
TY  - JOUR
AU  - G. G. Lazareva
AU  - V. A. Popov
AU  - A. S. Arakcheev
AU  - A. V. Burdakov
AU  - I. V. Shwab
AU  - V. L. Vaskevich
AU  - A. G. Maksimova
AU  - N. E. Ivashin
AU  - I. P. Oksogoeva
TI  - Mathematical simulation of the distribution of the electron beam current during pulsed heating of a metal target
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 97
EP  - 108
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a6/
LA  - ru
ID  - SJIM_2021_24_2_a6
ER  - 
%0 Journal Article
%A G. G. Lazareva
%A V. A. Popov
%A A. S. Arakcheev
%A A. V. Burdakov
%A I. V. Shwab
%A V. L. Vaskevich
%A A. G. Maksimova
%A N. E. Ivashin
%A I. P. Oksogoeva
%T Mathematical simulation of the distribution of the electron beam current during pulsed heating of a metal target
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 97-108
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a6/
%G ru
%F SJIM_2021_24_2_a6
G. G. Lazareva; V. A. Popov; A. S. Arakcheev; A. V. Burdakov; I. V. Shwab; V. L. Vaskevich; A. G. Maksimova; N. E. Ivashin; I. P. Oksogoeva. Mathematical simulation of the distribution of the electron beam current during pulsed heating of a metal target. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 97-108. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a6/

[1] L. Vyacheslavov, A. Arakcheev, A. Burdakov, I. Kandaurov, A. Kasatov, V. Kurkuchekov, K. Mekler, V. Popov, A. Shoshin, D. Skovorodin, Y. Trunev, A. Vasilyev, “Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads”, AIP Conf. Proc., 1771 (2016), 060004 | DOI

[2] A. S. Arakcheev, D. E. Apushkinskaya, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, G. G. Lazareva, A. G. Maksimova, V. A. Popov, A. V. Snytnikov, Yu. A. Trunev, A. A. Vasilyev, L. N. Vyacheslavov, “Two-dimensional numerical simulation of tungsten melting under pulsed electron beam”, Fusion Engineering and Design, 132 (2018), 13–17 | DOI

[3] G. G. Lazareva, A. S. Arakcheev, A. A. Vasilyev, A. G. Maksimova, “Numerical simulation of tungsten melting under fusion reactor-relevant high-power pulsed heating”, Smart Innovation, Systems and Technologies, 133 (2019), 41–51 | DOI

[4] G. G. Lazareva, A. S. Arakcheev, A. V. Burdakov, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, A. G. Maksimova, V. A. Popov, A. A. Shoshin, A. V. Snytnikov, Yu. A. Trunev, A. A. Vasilyev, L. N. Vyacheslavov, “Numerical model of high-power transient heating of tungsten with considering of various erosion effects”, J. Phys.: Conf. Series, 1103 (2018), 012001 | DOI

[5] G. G. Lazareva, A. S. Arakcheev, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, A. G. Maksimova, V. A. Popov, A. V. Snytnikov, Yu. A. Trunev, A. A. Vasilyev, L. N. Vyacheslavov, “Computational experiment for solution of the Stefan problem with nonlinear coefficients”, AIP Conf. Proc., 2025 (2018), 080005 | DOI

[6] P. Tolias, “Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications”, Nuclear Materials and Energy, 13 (2017), 42–57 | DOI

[7] Dzh. Dzhekson, Classical Electrodynamics, Wiley, N.Y., 1998 | MR

[8] G. Bukhgol'ts, Calculation of electric and magnetic fields, Izd. Inostr. Literatury, M., 1961 (in Russian) | MR

[9] V. Smait, Static, Dynamic Electricity, Edwards Brothers, Ann Arbor, 1936

[10] N. N. Yanenko, Subincremental Method for Solution of Multidimensional Problems of Mathematical Physics, Nauka, Novosibirsk, 1967 (in Russian)

[11] V. P. Zagonov, “Mathematical modeling of the electromagnetic effect of pulsed fields to complex technical systems”, Functioning and Development of Complex National Economic, Technical, Energy, Transport Systems, Communication Systems, and Communications, Znanie, M., 1998, 392–394 (in Russian)

[12] M. E. Zhukovskii, “Self-consistent quasi-3d model of radiation excitation of electromagnetic fields”, Mat. Modelir., 8:4 (1996), 3–20 | Zbl

[13] A. A. Samarskii, E. S. Nikolaev, Methods of solution of grid equations, Fizmatgiz, M., 1978 (in Russian)

[14] V. P. Il'in, Numerical methods for solution of the electrophysics problems, Nauka, M., 1985 (in Russian)

[15] R. G. Strongin, V. P. Gergel', V. A. Grishagin, K. A. Barkalov, Parallel computing in problems of global optimization, Izd. Moskov. Gos. Univ., M., 2013 (in Russian)

[16] A. A. Vasilyev, A. S. Arakcheev, I. A. Bataev, V. A. Bataev, A. V. Burdakov, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, K. I. Mekler, V. A. Popov, A. A. Shoshin, D. I. Skovorodin, Yu. A. Trunev, L. N. Vyacheslavov, “Observation of the tungsten surface damage under ITER-relevant transient heat loads during and after electron beam pulse”, AIP Conf. Proc., 1771 (2016), 060013 | DOI