Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_2_a5, author = {I. M. Kulikov}, title = {On a computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation using tetrahedral meshes}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {87--96}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a5/} }
TY - JOUR AU - I. M. Kulikov TI - On a computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation using tetrahedral meshes JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 87 EP - 96 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a5/ LA - ru ID - SJIM_2021_24_2_a5 ER -
%0 Journal Article %A I. M. Kulikov %T On a computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation using tetrahedral meshes %J Sibirskij žurnal industrialʹnoj matematiki %D 2021 %P 87-96 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a5/ %G ru %F SJIM_2021_24_2_a5
I. M. Kulikov. On a computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation using tetrahedral meshes. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 87-96. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a5/
[1] A. Boss, “Testing disk instability models for giant planet formation”, Astrophys. J. Letters, 661 (2007), L73–L76 | DOI
[2] L. Mayer, G. Lufkin, T. Quinn, J. Wadsley, “Fragmentation of gravitationally unstable gaseous protoplanetary disks with radiative transfer”, Astrophys. J. Letters, 661 (2007), L77–L80 | DOI
[3] A. Boss, “Flux-limited diffusion approximation models of giant planet formation by disk instability”, Astrophys. J., 677 (2008), 607–615 | DOI
[4] I. M. Kulikov, E. I. Vorobyov, I. G. Chernykh, V. G. Elbakyan, “Application of geodesic grids for modeling the hydrodynamic processes in spherical objects”, J. Appl. Indust. Math., 14:4 (2020), 672–680 | DOI | MR
[5] I. Kulikov, E. Vorobyov, I. Chernykh, V. Elbakyan, “Hydrodynamic modeling of self-gravitating astrophysical objects on tetrahedral meshes”, J. Phys.: Conf. Ser., 1640 (2020), 012003 | DOI
[6] V. V. Lukin, N. I. Shakura, K. A. Postnov, “Mathematical modeling of inclined accretion disks in cataclysmic variables”, J. Phys.: Conf. Ser., 1640 (2020), 012024 | DOI
[7] A. Boley, R. Durisen, A. Nordlund, J. Lord, “Three-dimensional radiative hydrodynamics for disk stability simulations: a proposed testing standard and new results”, Astrophys. J., 665 (2007), 1254–1267 | DOI
[8] I. M. Kulikov, I. G. Chernykh, B. M. Glinskiy, V. A. Protasov, “An efficient optimization of Hll method for the second generation of Intel Xeon Phi Processor”, Lobachevskii J. Math., 39:4 (2018), 543–551 | DOI | MR | Zbl
[9] I. M. Kulikov, I. G. Chernykh, A. V. Tutukov, “A new parallel intel xeon phi hydrodynamics code for massively parallel supercomputers”, Lobachevskii J. Math., 39:9 (2018), 1207–1216 | DOI | MR | Zbl
[10] I. M. Kulikov, I. G. Chernykh, A. F. Sapetina, S. V. Lomakin, A. V. Tutukov, “A new Rusanov-type solver with a local linear solution reconstruction for numerical modeling of white dwarf mergers by means massive parallel supercomputers”, Lobachevskii J. Math., 41:8 (2020), 1485–1491 | DOI | MR | Zbl
[11] G. Chen, H. Tang, P. Zhang, “Second-order accurate godunov scheme for multicomponent flows on moving triangular meshes”, J. Sci. Comput., 34 (2008), 64–86 | DOI | MR | Zbl