On a computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation using tetrahedral meshes
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation on tetrahedral meshes is proposed. This model is a qualitative extension of the classical gravitational hydrodynamics model adapted to simulation of star formation and evolution of protoplanetary disks. Some computational methods of solving this problem are described, and the results of numerical simulation of the solar mass cloud collapse are given.
Keywords: mathematical modeling, computational astrophysics, radiation transfer. .
@article{SJIM_2021_24_2_a5,
     author = {I. M. Kulikov},
     title = {On a computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation using tetrahedral meshes},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a5/}
}
TY  - JOUR
AU  - I. M. Kulikov
TI  - On a computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation using tetrahedral meshes
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 87
EP  - 96
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a5/
LA  - ru
ID  - SJIM_2021_24_2_a5
ER  - 
%0 Journal Article
%A I. M. Kulikov
%T On a computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation using tetrahedral meshes
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 87-96
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a5/
%G ru
%F SJIM_2021_24_2_a5
I. M. Kulikov. On a computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation using tetrahedral meshes. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 87-96. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a5/

[1] A. Boss, “Testing disk instability models for giant planet formation”, Astrophys. J. Letters, 661 (2007), L73–L76 | DOI

[2] L. Mayer, G. Lufkin, T. Quinn, J. Wadsley, “Fragmentation of gravitationally unstable gaseous protoplanetary disks with radiative transfer”, Astrophys. J. Letters, 661 (2007), L77–L80 | DOI

[3] A. Boss, “Flux-limited diffusion approximation models of giant planet formation by disk instability”, Astrophys. J., 677 (2008), 607–615 | DOI

[4] I. M. Kulikov, E. I. Vorobyov, I. G. Chernykh, V. G. Elbakyan, “Application of geodesic grids for modeling the hydrodynamic processes in spherical objects”, J. Appl. Indust. Math., 14:4 (2020), 672–680 | DOI | MR

[5] I. Kulikov, E. Vorobyov, I. Chernykh, V. Elbakyan, “Hydrodynamic modeling of self-gravitating astrophysical objects on tetrahedral meshes”, J. Phys.: Conf. Ser., 1640 (2020), 012003 | DOI

[6] V. V. Lukin, N. I. Shakura, K. A. Postnov, “Mathematical modeling of inclined accretion disks in cataclysmic variables”, J. Phys.: Conf. Ser., 1640 (2020), 012024 | DOI

[7] A. Boley, R. Durisen, A. Nordlund, J. Lord, “Three-dimensional radiative hydrodynamics for disk stability simulations: a proposed testing standard and new results”, Astrophys. J., 665 (2007), 1254–1267 | DOI

[8] I. M. Kulikov, I. G. Chernykh, B. M. Glinskiy, V. A. Protasov, “An efficient optimization of Hll method for the second generation of Intel Xeon Phi Processor”, Lobachevskii J. Math., 39:4 (2018), 543–551 | DOI | MR | Zbl

[9] I. M. Kulikov, I. G. Chernykh, A. V. Tutukov, “A new parallel intel xeon phi hydrodynamics code for massively parallel supercomputers”, Lobachevskii J. Math., 39:9 (2018), 1207–1216 | DOI | MR | Zbl

[10] I. M. Kulikov, I. G. Chernykh, A. F. Sapetina, S. V. Lomakin, A. V. Tutukov, “A new Rusanov-type solver with a local linear solution reconstruction for numerical modeling of white dwarf mergers by means massive parallel supercomputers”, Lobachevskii J. Math., 41:8 (2020), 1485–1491 | DOI | MR | Zbl

[11] G. Chen, H. Tang, P. Zhang, “Second-order accurate godunov scheme for multicomponent flows on moving triangular meshes”, J. Sci. Comput., 34 (2008), 64–86 | DOI | MR | Zbl