On exact multidimensional solutions to a nonlinear system of fourth-order hyperbolic equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 77-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the system of two fourth-order nonlinear hyperbolic partial differential equations. The right-hand sides of the equations contain double Laplace operators and the squares of the gradients of the sought functions. Such equations, close to the Boussinesq equation and the Navier–Stokes equations, occur in problems of hydrodynamics. We propose to search for a solution in the form of an ansatz containing quadratic dependence on the spatial variables and arbitrary functions of time. The use of the proposed ansatz allows us to decompose the process of finding the components of the solution depending on the space variables and time. For finding the dependence on the spatial variables, it is necessary to solve an algebraic system of matrix, vector, and scalar equations. We find the general solution to this system in parametric form. In finding the time-dependent components of the solution to the original system, there arises a system of nonlinear ordinary differential equations. In the particular case when the squares of the gradients are not included in the system, we establish the existence of exact solutions of a certain kind to the original system expressed through arbitrary harmonic functions of the spatial variables and exponential functions of time. Some examples are given of the constructed exact solutions including solutions periodic in time and anisotropic in space variables. The exact solutions can be used to verify numerical methods for the approximate construction of the solutions to applied boundary value problems.
Keywords: nonlinear system, nonlinear hyperbolic equation, reduction, Jacobi elliptic function. .
Mots-clés : exact solution
@article{SJIM_2021_24_2_a4,
     author = {A. A. Kosov and E. I. Semenov and V. V. Tirskikh},
     title = {On exact multidimensional solutions to a nonlinear system of fourth-order hyperbolic equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {77--86},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a4/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - E. I. Semenov
AU  - V. V. Tirskikh
TI  - On exact multidimensional solutions to a nonlinear system of fourth-order hyperbolic equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 77
EP  - 86
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a4/
LA  - ru
ID  - SJIM_2021_24_2_a4
ER  - 
%0 Journal Article
%A A. A. Kosov
%A E. I. Semenov
%A V. V. Tirskikh
%T On exact multidimensional solutions to a nonlinear system of fourth-order hyperbolic equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 77-86
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a4/
%G ru
%F SJIM_2021_24_2_a4
A. A. Kosov; E. I. Semenov; V. V. Tirskikh. On exact multidimensional solutions to a nonlinear system of fourth-order hyperbolic equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 77-86. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a4/

[1] S. S. Titov, “The method of finite-dimensional rings for solving nonlinear equations of mathematical physics”, Aerodynamics, Saratov. Gos. Univ., Saratov, 1988, 104–110 (in Russian)

[2] V. A. Galaktionov, S. S. Posashkov, “New exact solutions of parabolic equations with quadratic nonlinearities”, USSR Comput. Math. Math. Phys., 29:4 (1989), 112–119 | DOI | MR | Zbl

[3] G. A. Rudykh, E. I. Semenov, “The construction of exact solutions of the multidimensional quasilinear heat-conduction equation”, USSR Comput. Math. Math. Phys., 33:8 (1993), 1087–1097 | MR | Zbl

[4] G. A. Rudykh, E. I. Semenov, “Exact nonnegative solutions to the multidimensional nonlinear diffusion equation”, Sibir. Math. J., 39:5 (1998), 977–985 | DOI | MR | Zbl

[5] G. A. Rudykh, E. I. Semenov, “Non-self-similar solutions of multidimensional nonlinear diffusion equations”, Math. Notes, 67:2 (2000), 200–206 | DOI | DOI | MR | Zbl

[6] V. F. Zaitsev, A. D. Polyanin, Handbook on nonlinear equations of mathematical physics: exact solutions, Fizmatlit, M., 2003 (in Russian)

[7] A. D. Polyanin, V. F. Zaitsev, A. I. Zhurov, Methods for solution of nonlinear equations of mathematical physics and mechanics, Fizmatlit, M., 2005 (in Russian)

[8] V. A. Galactionov, S. R. Svirshchevskii, Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman Hall/CRC, 2007 | MR

[9] A. A. Kosov, E. I. Semenov, “Multidimensional exact solutions to the reaction-diffusion system with powerlow nonlinear terms”, Sibir. Math. J., 58:4 (2017), 619–632 | DOI | DOI | MR | Zbl

[10] A. A. Kosov, E. I. Semenov, “On exact multidimensional solutions of a system of nonlinear reaction-diffusion equations”, Differentsial'nye Uravneniya, 54:1 (2018), 108–122 (in Russian) | DOI | MR | Zbl

[11] A. D. Polyanin, A. I. Zhurov, “Solutions with functional separation of variables for two classes of nonlinear equations of mathematical physics”, Dokl. Akad. Nauk, 486:3 (2019), 287–291 (in Russian) | Zbl

[12] A. A. Kosov, E. I. Semenov, V. V. Tirskikh, “A generalized Boussinesq equation and the exact solution”, Vestnik Buryat. Gos. Univ. Matematika i informatika, 2020, no. 1, 3–10 (in Russian)

[13] A. L. Skubachevskii, “Vlasov-Poisson equations for a two-component plasma in a homogeneous magnetic field”, Russ. Math. Surveys, 69:2 (2014), 291–330 | DOI | DOI | MR | Zbl

[14] Y. Markov, G. Rudykh, N. Sidorov, A. Sinitsyn, D. Tolstonogov, “Steady state solutions of the Vlasov-Maxwell system and their stability”, Acta Appl. Math., 28:3 (1992), 253–293 | DOI | MR | Zbl

[15] N. A. Sidorov, A. V. Sinitsyn, “A stationary Vlasov-Maxwell system in bounded domains”, Nonlinear Analysis and Nonlinear Differential Equations, Fizmatlit, M., 2003, 50–88 (in Russian) | MR | Zbl

[16] F. R. Gantmakher, The Theory of Matrices, Amer. Math. Soc., AMS Chelsea Publ., 2000 | MR | MR