Modeling regular textures in images using the Radon transform
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 62-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Radon transform is a major integral transform in computed tomography and a widely applied technique in computer vision and image analysis used to detect linear structures and regular textures. Its application is based on the property of the integrals of the direct problem to accumulate the image brightness along the contours under study. The back-projection operation, one of the main components of tomographic algorithms, results in ridge functions having the directions in which they participated in the direct operator. In the present paper, we examine the ridge functions and their orientation as the features for describing the anisotropy of regular textures. These features are involved in the regular texture model as a sum of ridge functions. Many textures are visually perceived as a superposition of linear structures and are therefore examined using the Radon transform. The paper presents a computational scheme for the singular value decomposition of a regular texture into a sum of informative ridge functions. The results are given of numerical experiments with the textures of industrial fabrics. The algorithm can be used in processing the visual data in computer vision systems, textile industry, robotics, and crystallography.
Keywords: image processing, regular texture
Mots-clés : Radon transform, textile. .
@article{SJIM_2021_24_2_a3,
     author = {I. G. Kazantsev and R. Z. Turebekov and M. A. Sultanov},
     title = {Modeling regular textures in images using the {Radon} transform},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {62--76},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a3/}
}
TY  - JOUR
AU  - I. G. Kazantsev
AU  - R. Z. Turebekov
AU  - M. A. Sultanov
TI  - Modeling regular textures in images using the Radon transform
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 62
EP  - 76
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a3/
LA  - ru
ID  - SJIM_2021_24_2_a3
ER  - 
%0 Journal Article
%A I. G. Kazantsev
%A R. Z. Turebekov
%A M. A. Sultanov
%T Modeling regular textures in images using the Radon transform
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 62-76
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a3/
%G ru
%F SJIM_2021_24_2_a3
I. G. Kazantsev; R. Z. Turebekov; M. A. Sultanov. Modeling regular textures in images using the Radon transform. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 62-76. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a3/

[1] F. Natterer, The Mathematics of Computerized Tomography, Wiley, N.Y., 1985 | MR

[2] P. Bachiller-Burgos, L. J. Manso, P. Bustos, “A variant of the Hough transform for the combined detection of corners, segments, and polylines”, J. Image Video Proc., 2017 (2017), 32 | DOI

[3] V. G. Bondur, A. T. Zverev, “A method earthquake forecast based on the lineament analysis of satellite images”, Dokl. Earth Sci., 402:4 (2005), 561–567

[4] A. S. Alekseev, I. G. Kazantsev, V. P. Pyatkin, “A tomographic approach to highlighting lineaments on aerospace imagery”, Issled. Zemli iz Kosmosa, 1988, no. 5, 99–103 (in Russian)

[5] B. F. Logan, L. A. Shepp, “Optimal reconstruction of a function from its projections”, Duke Math. J., 42 (1975), 645–659 | MR | Zbl

[6] A. Pinkus, Ridge Functions, Univ. Press, Cambridge, 2015 | MR | Zbl

[7] V. E. Ismailov, “Approximation by Sums of Ridge Functions with Fixed Directions”, Algebra i Analiz, 28:6 (2016), 20–69 (in Russian)

[8] S. V. Konyagin, A. A. Kuleshov, V. E. Maiorov, “Some problems in the theory of ridge functions”, Proc. Steklov Inst. Math., 301:1 (2018), 144–169 | DOI | MR | Zbl

[9] R. M. Haralick, “Statistical and structural approaches to texture”, Proc. IEEE, 67:5 (1979), 786–804 | DOI

[10] P. P. Kol'tsov, “Comparative study of algorithms for the selection and classification of textures”, J. Comput. Math. Math. Phys., 51:8 (2011), 1561–1568 (in Russian) | Zbl

[11] F. Tomita, S. Tsuji, Computer analysis of visual textures, Kluwer Acad. Publ., Boston, 1990 | Zbl

[12] S. V. Ershov, V. Reimer, E. N. Kalinin, T. Gris, “Development of a computer vision system for measuring the fiber orientation in braided structures”, Izv. Vyssh. Uchebn. Zaved. Tekhnol. Tekstil. Prom., 2019, no. 5, 204–208 (in Russian)

[13] V. Kh. N'yan, Informatsionnaya sistema kontrolya kachestva proizvodstva mnogosloinykh tkanykh materialov na osnove obrabotki ikh izobrazhenii, Avtoreferat of candidates dissertation on techn. nauk, M., 2020

[14] Applications of Computer Vision in Fashion and Textiles, Woodhead Publ., Cambridge, 2018

[15] S. Thomassey, X. Zeng, Artificial Intelligence for Fashion Industry in the Big Data Era, Springer-Verl, Singapore, 2018

[16] P. M. Mahajan, S. R. Kolhe, P. M. Patil, “A review of automatic fabric defect detection techniques”, Adv. Comput. Research, 1:2 (2009), 18–29 | MR

[17] H. Y. T. Ngan, G. K. H. Pang, N. H. C. Yung, “Automated fabric defect detection: A review”, Image Vis. Comput., 29:7 (2011), 442–458 | DOI

[18] K. Hanbay, M. F. Talu, Ö. F. Özgüven, “Fabric defect detection systems and methods. A systematic literature review”, Optik, 127:24 (2016), 11960–11973 | DOI

[19] B. K. Behera, “Image-processing in textiles”, Textile Progress, 35:2–4 (2004), 1–193 | DOI

[20] J. Zhang, B. Xin, X. Wu, “A Review of fabric identification based on Image Analysis Technology”, Textiles and Light Industrial Science and Technology (TLIST), 2:3 (2013), 120–130

[21] C. H. Chan, G. K. H. Pang, “Fabric Defect Detection by Fourier Analysis”, IEEE Trans. Industry Applications, 36:5 (2000), 1267–1276 | DOI

[22] L. A. Vese, S. J. Osher, “Modeling textures with total variation minimization and oscillating patterns in image processing”, J. Sci. Computing, 19 (2003), 553–572 | DOI | MR | Zbl

[23] C. Chaudhari, R. K. Gupta, S. Fegade, “A hybrid method of textile defect detection using GLCM, LBP, SVD and Wavelet Transform”, Internat. J. Recent Technology and Engineering, 8:6 (2020), 5356–5360

[24] L. Peng, J. Liang, X. Shen, M. Zhao, L. Sui, “Textile fabric defect detection based on low-rank representation”, Multimedia Tools and Applications, 78:1 (2019), 99–124 | DOI

[25] M. K. Ng, H. Y. T. Ngan, X. Yuan, W. Zhang, “Lattice-based patterned fabric inspection by using total variation and sparsity with low-rank representations”, SIAM J. Imaging Sci., 10:4 (2017), 2140–2164 | DOI | MR | Zbl

[26] Z. Liu, B. Li C. Wang, M. Yu, S. Ding, “Fabric defect detection based on deep-feature and low-rank decomposition”, J. Engineered Fibers and Fabrics, 15 (2020), 1–12 | Zbl

[27] J. Cao, J. Zhang, Z. Wen, N. Wang, X. Liu, “Fabric defect inspection using prior knowledge guided least squares regression”, Multimedia Tools and Applications, 76:3 (2017), 4141–4157 | DOI

[28] I. G. Kazantsev, “Tomographic reconstruction from arbitrary directions using ridge functions”, Inverse Problems, 14 (1998), 635–645 | DOI | MR | Zbl

[29] M. E. Davison, “A singular value decomposition for the Radon transform in n-dimensional Euclidian space”, Numer. Funct. Anal. and Optim., 3 (1981), 321–340 | DOI | MR | Zbl

[30] M. E. Davison, F. A. Grunbaum, “Tomographic reconstruction with arbitrary directions”, Comm. Pure Appl. Math., 34 (1981), 77–120 | DOI | MR

[31] A. K. Louis, “Optimal sampling in nuclear magnetic resonance (NMR) tomography”, J. Comput. Assist. Tomogr., 6:2 (1982), 334–340 | DOI

[32] Fabric Defect Inspection GLSR Dataset, https://github.com/jjcao/Fabric-Defect-Inspection-GLSR

[33] J. Silvestre-Blanes, T. Albero-Albero, I. Miralles, R. Pérez-Llorens, J. Moreno, “A public fabric image database for defect detection”, AUTEX Research J., 19:4 (2019), 363–374 https://www.aitex.es/afid/ | DOI