Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_2_a2, author = {D. K. Durdiev and K. K. Turdiev}, title = {The problem of finding the kernels in the system}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {38--61}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a2/} }
D. K. Durdiev; K. K. Turdiev. The problem of finding the kernels in the system. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 38-61. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a2/
[1] L. D. Landau, E. M. Lifshits, Electrodynamics of continuum, Nauka, M., 1982 (in Russian) | MR
[2] F. R. Gantmakher, The Theory of Matrices, Amer. Math. Soc., AMS Chelsea Publ., 2000 | MR | MR
[3] V. G. Romanov, S. I. Kabanikhin, T. P. Pukhnacheva, Inverse problems of electrodynamics, Izd. Vychisl. Tscentra Sibir. Otdel. Akad. Nauk SSSR, Novosibirsk, 1984 (in Russian)
[4] V. G. Romanov, “Inverse problems for equation with a memory”, Eurasian J. Math. Comput. Applications, 2:4 (2014), 51–80 | DOI
[5] V. G. Romanov, “Problem of determining the permittivity in the stationary system of Maxwell equations”, Dokl. Math., 95:3 (2017), 230–234 | DOI | MR | Zbl
[6] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal.: Theory, Methods Appl., 22:1 (1994), 21–44 | DOI | MR | Zbl
[7] D. K. Durdiev, Zh. D. Totieva, “A problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zhurn. Industr. Matematiki, 16:2 (2013), 72–82 (in Russian) | MR | Zbl
[8] V. G. Yakhno, Inverse problems for elasticity differential equations, Nauka, Novosibirsk, 1989 (in Russian)
[9] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[10] V. G. Romanov, “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation”, J. Appl. Ind. Math., 6:3 (2012), 360–370 | DOI | MR | Zbl
[11] D. K. Durdiev, Zh. D. Totieva, “Inverse problem for identification of the multidimensional kernel in a viscoelasticity equation”, Vladikavkaz. Mat. Zhurn., 17:4 (2015), 18–43 (in Russian) | MR | Zbl
[12] D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zhurn. Mat. Fiz., Anal., Geom., 3:4 (2007), 411–423 (in Russian) | MR | Zbl
[13] D. K. Durdiev, Zh. Sh. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Math. Notes, 97:6 (2015), 867–877 | DOI | MR | Zbl
[14] V. G. Romanov, “On the determination of the coefficients in the viscoelasticity equations”, Sib. Math. J., 55:3 (2014), 503–510 | DOI | MR | Zbl
[15] V. G. Romanov, “A problem of determining the kernel in an viscoelasticity equation”, Dokl. Akad. Nauk, 446:1 (2012), 18–20 (in Russian) | Zbl
[16] D. K. Durdiev, A. A. Rakhmonov, “An inverse problem for a system of integro-differential equations of SH-waves in a viscoelastic porous medium: global solvability”, Teor. Mat. Fiz., 195:3 (2018), 491–506 | MR | Zbl
[17] D. K. Durdiev, A. A. Rakhmonov, “The problem of determining the 2D kernel in a system of integrodifferential equations of a viscoelastic porous medium”, J. Appl. Ind. Math., 14:2 (2020), 281–295 | DOI | MR
[18] D. K. Durdiev, A. A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci., 43:15 (2020), 8776–8796 | DOI | MR | Zbl
[19] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations”, Math. Meth. Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl
[20] Z. D. Totieva, D. K. Durdiev, “The problem of finding the one-dimensional kernel of the thermoviscoelasticity equation”, Math. Notes, 103:1-2 (2018), 118–132 | DOI | MR | Zbl
[21] Z. S. Safarov, D. K. Durdiev, “Inverse problem for an integro-differential equation of acoustics”, Differ. Equ., 54:1 (2018), 134–142 | DOI | MR | Zbl
[22] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, J. Inverse Ill-Posed Probl., 28:1 (2020), 43–52 | DOI | MR | Zbl
[23] U. D. Durdiev, “An inverse problem for the system of viscoelasticity equations in homogeneous anisotropic media”, J. Appl. Ind. Math., 13:4 (2019), 623–628 | DOI | DOI | MR
[24] M. K. Teshaev, I. I. Safarov, N. U. Kuldashov, M. R. Ishmamatov, T. R. Ruziev, “On the distribution of free waves on the surface of a viscoelastic cylindrical cavity”, J. Vibrational Engineering and Technologies, 8:4 (2020), 579–585 | DOI
[25] M. Mirsaidov, M. Teshaev, S. Ablokulov, D. Rayimov, “Choice of optimum extinguishers parameters for a dissipative mechanical system”, IOP Conf. Ser.: Mater. Sci. Engrg., 883:1 (2020), 012100 | DOI
[26] I. Safarov, M. Teshaev, E. Toshmatov, Z. Boltaev, F. Homidov, “Torsional vibrations of a cylindrical shell in a linear viscoelastic medium”, IOP Conf. Ser.: Mater. Sci. Engrg., 883:1 (2020), 012190 | DOI
[27] M. K. Teshaev, I. I. Safarov, M. Mirsaidov, “Oscillations of multilayer viscoelastic composite toroidal pipes”, J. Serbian Society Comput. Mechanics, 13:2 (2019), 104–115 | DOI
[28] M. K. Teshaev, “Realization of servo-constraints by electromechanical servosystems”, Russian Mathematics, 54:12 (2010), 38–44 | DOI | MR | Zbl
[29] A. L. Karchevsky, “A frequency-domain analytical solution of Maxwell's equations for layered anisotropic media”, Russian Geology and Geophysics, 48:8 (2007), 689–695 | DOI
[30] V. G. Romanov, A. L. Karchevsky, “Determination of permittivity and conductivity of medium in a vicinity of a well having complex profile”, Eurasian J. Math. Comput. Appl., 6:4 (2018), 62–72
[31] A. L. Karchevsky, “A numerical solution to a system of elasticity equations for layered anisotropic media”, Russian Geology and Geophysics, 46:3 (2005), 339–351
[32] A. L. Karchevsky, “The direct dynamical problem of seismics for horizontally stratified media”, Sib. Electron. Mat. Izv., 2 (2005), 23–61 | MR | Zbl
[33] A. L. Karchevsky, “Numerical solution to the one-dimensional inverse problem for an elastic system”, Dokl. Earth Sci., 375:8 (2000), 1325–1328 | Zbl
[34] A. L. Karchevsky, “Simultaneous reconstruction of permittivity and conductivity”, Inverse and III-Posed Probl., 17:4 (2009), 387–404 | MR | Zbl
[35] E. Kurpinar, A. L. Karchevsky, “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media”, Inverse Probl., 20:3 (2004), 953–976 | DOI | MR | Zbl
[36] A. L. Karchevsky, “Numerical reconstruction of medium parameters of member of thin anisotropic layers”, Inverse III-Posed Probl., 12:5 (2004), 519–534 | DOI | MR | Zbl
[37] U. D. Durdiev, “Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory”, Sib. Electron. Mat. Izv., 17 (2020), 179–189 | DOI | MR | Zbl
[38] Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Eurasian J. Math. Comput. Appl., 8:2 (2020), 4–16 | MR
[39] D. K. Durdiev, Kh. Kh. Turdiev, “An inverse problem for a first order hyperbolic system with memory”, Differents. Uravneniya, 56:12 (2020), 1666–1675 (in Russian) | Zbl
[40] A. N. Kolmogorov, S. V. Fomin, Elements of function theory and functional analysis, Nauka, M., 1989 (in Russian) | MR