The problem of finding the kernels in the system
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 38-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We pose the direct and inverse problem of finding the electromagnetic field and the diagonal memory matrix for the reduced canonical system of integro-differential Maxwell's equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables $x_1$ and $x_2$ of the solution to the direct problem and the unknowns of the inverse problem. To this system, we then apply the method of contraction mapping in the space of continuous functions with a weighted norm. Thus, we prove the global existence and uniqueness theorems for solutions to the posed problems.
Keywords: hyperbolic system, system of Maxwell's equations, integral equation, contraction mapping principle.
@article{SJIM_2021_24_2_a2,
     author = {D. K. Durdiev and K. K. Turdiev},
     title = {The problem of finding the kernels in the system},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {38--61},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a2/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - K. K. Turdiev
TI  - The problem of finding the kernels in the system
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 38
EP  - 61
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a2/
LA  - ru
ID  - SJIM_2021_24_2_a2
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A K. K. Turdiev
%T The problem of finding the kernels in the system
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 38-61
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a2/
%G ru
%F SJIM_2021_24_2_a2
D. K. Durdiev; K. K. Turdiev. The problem of finding the kernels in the system. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 38-61. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a2/

[1] L. D. Landau, E. M. Lifshits, Electrodynamics of continuum, Nauka, M., 1982 (in Russian) | MR

[2] F. R. Gantmakher, The Theory of Matrices, Amer. Math. Soc., AMS Chelsea Publ., 2000 | MR | MR

[3] V. G. Romanov, S. I. Kabanikhin, T. P. Pukhnacheva, Inverse problems of electrodynamics, Izd. Vychisl. Tscentra Sibir. Otdel. Akad. Nauk SSSR, Novosibirsk, 1984 (in Russian)

[4] V. G. Romanov, “Inverse problems for equation with a memory”, Eurasian J. Math. Comput. Applications, 2:4 (2014), 51–80 | DOI

[5] V. G. Romanov, “Problem of determining the permittivity in the stationary system of Maxwell equations”, Dokl. Math., 95:3 (2017), 230–234 | DOI | MR | Zbl

[6] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal.: Theory, Methods Appl., 22:1 (1994), 21–44 | DOI | MR | Zbl

[7] D. K. Durdiev, Zh. D. Totieva, “A problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zhurn. Industr. Matematiki, 16:2 (2013), 72–82 (in Russian) | MR | Zbl

[8] V. G. Yakhno, Inverse problems for elasticity differential equations, Nauka, Novosibirsk, 1989 (in Russian)

[9] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] V. G. Romanov, “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation”, J. Appl. Ind. Math., 6:3 (2012), 360–370 | DOI | MR | Zbl

[11] D. K. Durdiev, Zh. D. Totieva, “Inverse problem for identification of the multidimensional kernel in a viscoelasticity equation”, Vladikavkaz. Mat. Zhurn., 17:4 (2015), 18–43 (in Russian) | MR | Zbl

[12] D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zhurn. Mat. Fiz., Anal., Geom., 3:4 (2007), 411–423 (in Russian) | MR | Zbl

[13] D. K. Durdiev, Zh. Sh. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Math. Notes, 97:6 (2015), 867–877 | DOI | MR | Zbl

[14] V. G. Romanov, “On the determination of the coefficients in the viscoelasticity equations”, Sib. Math. J., 55:3 (2014), 503–510 | DOI | MR | Zbl

[15] V. G. Romanov, “A problem of determining the kernel in an viscoelasticity equation”, Dokl. Akad. Nauk, 446:1 (2012), 18–20 (in Russian) | Zbl

[16] D. K. Durdiev, A. A. Rakhmonov, “An inverse problem for a system of integro-differential equations of SH-waves in a viscoelastic porous medium: global solvability”, Teor. Mat. Fiz., 195:3 (2018), 491–506 | MR | Zbl

[17] D. K. Durdiev, A. A. Rakhmonov, “The problem of determining the 2D kernel in a system of integrodifferential equations of a viscoelastic porous medium”, J. Appl. Ind. Math., 14:2 (2020), 281–295 | DOI | MR

[18] D. K. Durdiev, A. A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci., 43:15 (2020), 8776–8796 | DOI | MR | Zbl

[19] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations”, Math. Meth. Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl

[20] Z. D. Totieva, D. K. Durdiev, “The problem of finding the one-dimensional kernel of the thermoviscoelasticity equation”, Math. Notes, 103:1-2 (2018), 118–132 | DOI | MR | Zbl

[21] Z. S. Safarov, D. K. Durdiev, “Inverse problem for an integro-differential equation of acoustics”, Differ. Equ., 54:1 (2018), 134–142 | DOI | MR | Zbl

[22] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, J. Inverse Ill-Posed Probl., 28:1 (2020), 43–52 | DOI | MR | Zbl

[23] U. D. Durdiev, “An inverse problem for the system of viscoelasticity equations in homogeneous anisotropic media”, J. Appl. Ind. Math., 13:4 (2019), 623–628 | DOI | DOI | MR

[24] M. K. Teshaev, I. I. Safarov, N. U. Kuldashov, M. R. Ishmamatov, T. R. Ruziev, “On the distribution of free waves on the surface of a viscoelastic cylindrical cavity”, J. Vibrational Engineering and Technologies, 8:4 (2020), 579–585 | DOI

[25] M. Mirsaidov, M. Teshaev, S. Ablokulov, D. Rayimov, “Choice of optimum extinguishers parameters for a dissipative mechanical system”, IOP Conf. Ser.: Mater. Sci. Engrg., 883:1 (2020), 012100 | DOI

[26] I. Safarov, M. Teshaev, E. Toshmatov, Z. Boltaev, F. Homidov, “Torsional vibrations of a cylindrical shell in a linear viscoelastic medium”, IOP Conf. Ser.: Mater. Sci. Engrg., 883:1 (2020), 012190 | DOI

[27] M. K. Teshaev, I. I. Safarov, M. Mirsaidov, “Oscillations of multilayer viscoelastic composite toroidal pipes”, J. Serbian Society Comput. Mechanics, 13:2 (2019), 104–115 | DOI

[28] M. K. Teshaev, “Realization of servo-constraints by electromechanical servosystems”, Russian Mathematics, 54:12 (2010), 38–44 | DOI | MR | Zbl

[29] A. L. Karchevsky, “A frequency-domain analytical solution of Maxwell's equations for layered anisotropic media”, Russian Geology and Geophysics, 48:8 (2007), 689–695 | DOI

[30] V. G. Romanov, A. L. Karchevsky, “Determination of permittivity and conductivity of medium in a vicinity of a well having complex profile”, Eurasian J. Math. Comput. Appl., 6:4 (2018), 62–72

[31] A. L. Karchevsky, “A numerical solution to a system of elasticity equations for layered anisotropic media”, Russian Geology and Geophysics, 46:3 (2005), 339–351

[32] A. L. Karchevsky, “The direct dynamical problem of seismics for horizontally stratified media”, Sib. Electron. Mat. Izv., 2 (2005), 23–61 | MR | Zbl

[33] A. L. Karchevsky, “Numerical solution to the one-dimensional inverse problem for an elastic system”, Dokl. Earth Sci., 375:8 (2000), 1325–1328 | Zbl

[34] A. L. Karchevsky, “Simultaneous reconstruction of permittivity and conductivity”, Inverse and III-Posed Probl., 17:4 (2009), 387–404 | MR | Zbl

[35] E. Kurpinar, A. L. Karchevsky, “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media”, Inverse Probl., 20:3 (2004), 953–976 | DOI | MR | Zbl

[36] A. L. Karchevsky, “Numerical reconstruction of medium parameters of member of thin anisotropic layers”, Inverse III-Posed Probl., 12:5 (2004), 519–534 | DOI | MR | Zbl

[37] U. D. Durdiev, “Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory”, Sib. Electron. Mat. Izv., 17 (2020), 179–189 | DOI | MR | Zbl

[38] Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Eurasian J. Math. Comput. Appl., 8:2 (2020), 4–16 | MR

[39] D. K. Durdiev, Kh. Kh. Turdiev, “An inverse problem for a first order hyperbolic system with memory”, Differents. Uravneniya, 56:12 (2020), 1666–1675 (in Russian) | Zbl

[40] A. N. Kolmogorov, S. V. Fomin, Elements of function theory and functional analysis, Nauka, M., 1989 (in Russian) | MR