Direct method for solving the inverse coefficient problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 134-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some direct numerical method is presented for solving the inverse coefficient problem for an elliptic equation with piecewise constant coefficients. It is assumed that the discontinuity points of the coefficients are known. The algorithm is based on the theory of spectral problems of linear algebra and the application of finite-difference methods for solving the elliptic equations. The values (measurements) of the solution at the discontinuity points of the coefficients are used as additional information. In the case of unperturbed additional information, the coefficients are reconstructed precisely.
Mots-clés : inverse coefficient problem
Keywords: numerical solution, spectral problem, exact difference scheme, direct method. .
@article{SJIM_2021_24_2_a10,
     author = {S. B. Sorokin},
     title = {Direct method for solving the inverse coefficient problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {134--147},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a10/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - Direct method for solving the inverse coefficient problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 134
EP  - 147
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a10/
LA  - ru
ID  - SJIM_2021_24_2_a10
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T Direct method for solving the inverse coefficient problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 134-147
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a10/
%G ru
%F SJIM_2021_24_2_a10
S. B. Sorokin. Direct method for solving the inverse coefficient problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 134-147. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a10/

[1] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Extreme methods for solving the ill-posed problems and their applications to the inverse problems of heat transfer, Fizmatgiz, M., 1988 (in Russian)

[2] A. M. Denisov, Introduction to the theory of inverse problems, Izd. Moskov. Gos. Univ., M., 1994 (in Russian) | MR

[3] A. A. Samarskii, P. N. Vabishchevich, Numerical heat transfer, Librokom, M., 2009 (in Russian)

[4] S. I. Kabanikhin, Inverse and ill-posed problems: theory and applications, Sibir. Nauchn. Izd., Novosibirsk, 2009 (in Russian)

[5] A. O. Vatul'yan, Inverse coefficient problems of mechanics, Fizmatlit, M., 2019 (in Russian)

[6] T. F. Chan, X. C. Tai, “Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients”, J. Comput. Physics, 193:1 (2004), 40–66 | DOI | MR | Zbl

[7] S. I. Kabanikhin, A. Kh. Khasanov, A. V. Penenko, “A gradient descent method for solving an inverse coefficient heat conduction problem”, Numer. Anal. Appl., 1:1 (2008), 34–45 | DOI | DOI | MR | Zbl

[8] B. E. Pobedrya, A. S. Kravchuk, P. A. Arizpe, “Identification of the coefficients of the nonstationary heat equation”, Vychisl. Mekhanika Sploshnykh Sred, 1:4 (2008), 78–87 (in Russian) | DOI | MR

[9] A. V. Penenko, “Discrete-analytic schemes for solving an inverse coefficient heat conduction problem in a layered medium with gradient methods”, Numer. Anal. Appl., 5:4 (2012), 326–341 | DOI | Zbl

[10] D. N. Hao, T. N. Quyen, “Convergence rates for Tikhonov regularization of a two-coefficient identification problem in an elliptic boundary value problem”, Numerische Mathematik, 120:1 (2012), 45–77 | DOI | MR | Zbl

[11] D. N. Hao, T. N. Quyen, “Convergence rates for total variation regularization of coefficient identification problems in elliptic equations II”, J. Math. Anal. Appl., 388:1 (2012), 593–616 | DOI | MR | Zbl

[12] R. A. Aliev, “Finding the coefficients of a linear elliptic equation”, J. Appl. Ind. Math., 10:2 (2016), 168–178 | DOI | DOI | MR | Zbl

[13] T. N. Quyen, “Variational method for multiple parameter identification in elliptic PDEs”, J. Math. Anal. Appl., 461:1 (2018), 676–700 | DOI | MR | Zbl

[14] T. N. Quyen, “Finite element analysis for identifying the reaction coefficient in PDE from boundary observations”, Appl. Numer. Math., 145 (2019), 297–314 | DOI | MR | Zbl

[15] A. I. Kozhanov, “On the solvability of the inverse problems of parameter recovery in elliptic equations”, Mat. Zametki Sever. Vost. Fed. Univ., 27:4 (2020), 14–29 (in Russian) | DOI | MR

[16] S. B. Sorokin, “An economical algorithm for numerical solution of the problem of identifying the right-hand side of the poisson equation”, J. Appl. Ind. Math., 12:2 (2018), 362–368 | DOI | DOI | MR | Zbl

[17] S. B. Sorokin, “An efficient direct method for numerically solving the cauchy problem for Laplace's equation”, Numer. Anal. Appl., 12:1 (2019), 87–103 | DOI | DOI | MR | MR

[18] S. B. Sorokin, “An implicit iterative method for numerical solution of the Cauchy problem for elliptic equations”, J. Appl. Ind. Math., 13:4 (2019), 759–770 (in Russian) | DOI | DOI | MR

[19] O. M. Alifanov, A. P. Tryanin, “Determination of the coefficient of internal heat exchange and the effective thermal conductivity of a porous solid on the basis of a nonstationary experiment”, J. Engrg. Physics, 48:3 (1985), 356–365 | DOI | MR

[20] G. A. Virnovskii, E. I. Levitan, “On identification of a two-dimensional model of a homogeneous liquid flow in a porous medium”, Zh. Vychisl. Matematiki i Mat. Fiziki, 30:5 (1990), 727–735 (in Russian) | MR

[21] P. P. Permyakov, “Mathematical modeling the technogeneous pollution in frozen soils”, Izv. Tomsk. Politekh. Univ. Inzhiniring Georesursov, 307:5 (2004), 63–68 (in Russian)

[22] I. Knowles, “Parameter identification for elliptic problems”, J. Comput. Appl. Math., 131:1-2 (2001), 175–194 | DOI | MR | Zbl

[23] G. I. Marchuk, V. I. Agoshkov, Introduction to the grid-projection methods, Nauka, M., 1981 (in Russian) | MR

[24] A. A. Samarskii, Theory of difference schemes, Fizmatgiz, M., 1989 (in Russian)

[25] B. N. Parlett, Kh. D. Ikramov, Yu. A. Kuznetsov, The Symmetric Eigenvalue Problem: Numerical Methods, Mir, M., 1983 (in Russian) | MR