Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_2_a10, author = {S. B. Sorokin}, title = {Direct method for solving the inverse coefficient problem}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {134--147}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a10/} }
S. B. Sorokin. Direct method for solving the inverse coefficient problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 134-147. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a10/
[1] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Extreme methods for solving the ill-posed problems and their applications to the inverse problems of heat transfer, Fizmatgiz, M., 1988 (in Russian)
[2] A. M. Denisov, Introduction to the theory of inverse problems, Izd. Moskov. Gos. Univ., M., 1994 (in Russian) | MR
[3] A. A. Samarskii, P. N. Vabishchevich, Numerical heat transfer, Librokom, M., 2009 (in Russian)
[4] S. I. Kabanikhin, Inverse and ill-posed problems: theory and applications, Sibir. Nauchn. Izd., Novosibirsk, 2009 (in Russian)
[5] A. O. Vatul'yan, Inverse coefficient problems of mechanics, Fizmatlit, M., 2019 (in Russian)
[6] T. F. Chan, X. C. Tai, “Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients”, J. Comput. Physics, 193:1 (2004), 40–66 | DOI | MR | Zbl
[7] S. I. Kabanikhin, A. Kh. Khasanov, A. V. Penenko, “A gradient descent method for solving an inverse coefficient heat conduction problem”, Numer. Anal. Appl., 1:1 (2008), 34–45 | DOI | DOI | MR | Zbl
[8] B. E. Pobedrya, A. S. Kravchuk, P. A. Arizpe, “Identification of the coefficients of the nonstationary heat equation”, Vychisl. Mekhanika Sploshnykh Sred, 1:4 (2008), 78–87 (in Russian) | DOI | MR
[9] A. V. Penenko, “Discrete-analytic schemes for solving an inverse coefficient heat conduction problem in a layered medium with gradient methods”, Numer. Anal. Appl., 5:4 (2012), 326–341 | DOI | Zbl
[10] D. N. Hao, T. N. Quyen, “Convergence rates for Tikhonov regularization of a two-coefficient identification problem in an elliptic boundary value problem”, Numerische Mathematik, 120:1 (2012), 45–77 | DOI | MR | Zbl
[11] D. N. Hao, T. N. Quyen, “Convergence rates for total variation regularization of coefficient identification problems in elliptic equations II”, J. Math. Anal. Appl., 388:1 (2012), 593–616 | DOI | MR | Zbl
[12] R. A. Aliev, “Finding the coefficients of a linear elliptic equation”, J. Appl. Ind. Math., 10:2 (2016), 168–178 | DOI | DOI | MR | Zbl
[13] T. N. Quyen, “Variational method for multiple parameter identification in elliptic PDEs”, J. Math. Anal. Appl., 461:1 (2018), 676–700 | DOI | MR | Zbl
[14] T. N. Quyen, “Finite element analysis for identifying the reaction coefficient in PDE from boundary observations”, Appl. Numer. Math., 145 (2019), 297–314 | DOI | MR | Zbl
[15] A. I. Kozhanov, “On the solvability of the inverse problems of parameter recovery in elliptic equations”, Mat. Zametki Sever. Vost. Fed. Univ., 27:4 (2020), 14–29 (in Russian) | DOI | MR
[16] S. B. Sorokin, “An economical algorithm for numerical solution of the problem of identifying the right-hand side of the poisson equation”, J. Appl. Ind. Math., 12:2 (2018), 362–368 | DOI | DOI | MR | Zbl
[17] S. B. Sorokin, “An efficient direct method for numerically solving the cauchy problem for Laplace's equation”, Numer. Anal. Appl., 12:1 (2019), 87–103 | DOI | DOI | MR | MR
[18] S. B. Sorokin, “An implicit iterative method for numerical solution of the Cauchy problem for elliptic equations”, J. Appl. Ind. Math., 13:4 (2019), 759–770 (in Russian) | DOI | DOI | MR
[19] O. M. Alifanov, A. P. Tryanin, “Determination of the coefficient of internal heat exchange and the effective thermal conductivity of a porous solid on the basis of a nonstationary experiment”, J. Engrg. Physics, 48:3 (1985), 356–365 | DOI | MR
[20] G. A. Virnovskii, E. I. Levitan, “On identification of a two-dimensional model of a homogeneous liquid flow in a porous medium”, Zh. Vychisl. Matematiki i Mat. Fiziki, 30:5 (1990), 727–735 (in Russian) | MR
[21] P. P. Permyakov, “Mathematical modeling the technogeneous pollution in frozen soils”, Izv. Tomsk. Politekh. Univ. Inzhiniring Georesursov, 307:5 (2004), 63–68 (in Russian)
[22] I. Knowles, “Parameter identification for elliptic problems”, J. Comput. Appl. Math., 131:1-2 (2001), 175–194 | DOI | MR | Zbl
[23] G. I. Marchuk, V. I. Agoshkov, Introduction to the grid-projection methods, Nauka, M., 1981 (in Russian) | MR
[24] A. A. Samarskii, Theory of difference schemes, Fizmatgiz, M., 1989 (in Russian)
[25] B. N. Parlett, Kh. D. Ikramov, Yu. A. Kuznetsov, The Symmetric Eigenvalue Problem: Numerical Methods, Mir, M., 1983 (in Russian) | MR