Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_2_a1, author = {V. I. Vasil'ev and A. M. Kardashevsky}, title = {Iterative identification of the diffusion coefficient in an initial boundary value problem for the subdiffusion equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {23--37}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a1/} }
TY - JOUR AU - V. I. Vasil'ev AU - A. M. Kardashevsky TI - Iterative identification of the diffusion coefficient in an initial boundary value problem for the subdiffusion equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 23 EP - 37 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a1/ LA - ru ID - SJIM_2021_24_2_a1 ER -
%0 Journal Article %A V. I. Vasil'ev %A A. M. Kardashevsky %T Iterative identification of the diffusion coefficient in an initial boundary value problem for the subdiffusion equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2021 %P 23-37 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a1/ %G ru %F SJIM_2021_24_2_a1
V. I. Vasil'ev; A. M. Kardashevsky. Iterative identification of the diffusion coefficient in an initial boundary value problem for the subdiffusion equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 23-37. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a1/
[1] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Acad. Press, San Diego, 1999 | MR | Zbl
[2] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Dekker, Marcel, 2000 | MR | Zbl
[3] A. M. Nakhushev, Elements of Fractional Calculus and Their Application, Fizmatgiz, M., 2003 (in Russian)
[4] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Sci, Amsterdam, 2006 | MR | Zbl
[5] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verl, Berlin, 2010 | MR | Zbl
[6] M. Caputo, “Lineal model of dissipation whose Q is almost frequancy independent. Part II”, Geophys. J. Astronom. Soc., 13 (1967), 529–539 | DOI
[7] O. P. Agrawal, “Solution for a fractional diffusion-wave equation defined in a bounded domain”, Nonlinear Dynamics, 29 (2002), 145–155 | DOI | MR | Zbl
[8] P. Zhuang, F. Liu, “Implicit difference approximation for the time fractional diffusion equation”, J. Appl. Math. Comput., 22:3 (2006), 87–99 | DOI | MR | Zbl
[9] Y. Lin, C. Xu, “Finite difference/spectral approximations for the time-fractional diffusion equation”, J. Comput. Phys., 225 (2007), 1533–1552 | DOI | MR | Zbl
[10] D. A. Murio, “Time fractional IHCP with Caputo fractional derivatives”, Comput. Math. Appl., 56 (2008), 2371–2381 | DOI | MR | Zbl
[11] A. A. Alikhanov, “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys., 280 (2015), 424–438 | DOI | MR | Zbl
[12] A. A. Alikhanov, “Stability and convergence of difference schemes for the boundary value problems of fractional diffusion equations”, Comput. Math. Math. Phys., 56:4 (2016), 561–575 | DOI | DOI | MR | Zbl
[13] A. K. Bazzaev, I. D. Tsopanov, “Difference schemes for partial differential equations of fractional order”, Ufim. Mat. Zh., 11:2 (2019), 19–35 (in Russian) | DOI | MR | Zbl
[14] V. M. Goloviznin, I. A. Korotkin, “Methods for numerical solution of some one-dimensional equations with fractional derivatives”, Differential Equations, 42:7 (2006), 967–973 | DOI | MR | Zbl
[15] M. Zecova, J. Terpak, “Heat conduction modeling by using fractional-order derivatives”, Appl. Math. Comput., 257 (2015), 365–373 | DOI | MR | Zbl
[16] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Mathematics and Its Applications, Springer-Verl., Netherlands, 1995 | MR
[17] A. A. Samarskii, P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics, Inverse and Ill-Posed Problems. Ser., 52, Walter de Gruyter, Berlin, 2008 | MR
[18] S. I. Kabanikhin, Inverse and Ill-posed Problems Theory and Applications, Inverse and Ill-Posed Problems. Ser., 55, Walter de Gruyter, Berlin, 2011 | DOI | MR
[19] J. Janno, “Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation”, Electron. J. Differ. Equ., 199 (2016), 1–28 ; http://ejde.math.txstate.eduhttp://ejde.math.unt.edu | MR | Zbl
[20] M. D'Ovidio, P. Loreti, A. Momenzadeh, S. Ahrabi, “Determination of order in linear fractional differential equations”, J. Fract. Calculus Appl. Anal., 21:4 (2018), 937–948 | DOI | MR
[21] Z. Li, M. Yamamoto, “Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation”, Appl. Anal., 94 (2015), 570–579 | DOI | MR | Zbl
[22] A. N. Bondarenko, D. S. Ivashchenko, “Methods for the numerical solution of boundary value problems in theory of anomalous diffusion”, Sib. Electron. Mat. Izv., 5 (2008), 581–594 (in Russian) | Zbl
[23] G. Li, D. Zhang, X. Jia, M. Yamamoto, “Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation”, Inverse Probl, 29 (2013), 065014 | DOI | MR | Zbl
[24] L. Sun, X. Yan, T. Wei, “Identification of time-dependent convection coefficient in a time-fractional diffusion equation”, J. Comput. Appl. Math, 346 (2019), 505–517 | DOI | MR | Zbl
[25] A. Kardashevsky, “Fractional derivative order with respect to time for diffusion equation: an iterative method of determination”, J. Phys.: Conf. Series, 1715 (2021), 012035 | DOI
[26] V. I. Vasil'ev, A. M. Kardashevskii, “Numerical identification of order of the fractional time derivative in a subdiffusion model”, Mat. Zametki Sev. Vost. Fed. Univ., 27:4 (2020), 60–69 (in Russian) | DOI
[27] A. I. Kozhanov, “The heat transfer equation with an unknown heat capacity coefficient”, J. Appl. Indust. Math., 23:1 (2020), 104–114 | DOI | DOI | MR