Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_2_a0, author = {I. V. Boykov and V. A. Ryazantsev}, title = {An approximate method for solving the inverse coefficient problem}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {5--22}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a0/} }
TY - JOUR AU - I. V. Boykov AU - V. A. Ryazantsev TI - An approximate method for solving the inverse coefficient problem JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 5 EP - 22 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a0/ LA - ru ID - SJIM_2021_24_2_a0 ER -
I. V. Boykov; V. A. Ryazantsev. An approximate method for solving the inverse coefficient problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 5-22. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a0/
[1] M. M. Lavrent'ev, V. G. Vasil'ev, V. G. Romanov, Multidimensional Inverse Problems for Differential Equations, Nauka, Novosibirsk, 1969 (in Russian)
[2] S. I. Kabanikhin, Inverse, Ill-Posed Problems, Sibir. Nauchn. Izd., Novosibirsk, 2009 (in Russian)
[3] A. Hanasoğlu Hasanov, V. G. Romanov, Introduction to Inverse Problems for Differential Equations, Springer Internat. Publ., Heidelberg, 2017 | MR
[4] A. M. Denisov, Introduction to the theory of inverse problems, Izd. Moskov. Gos. Univ., M., 1994 (in Russian) | MR
[5] L. Beilina, M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer-Verl, N.Y., 2012 | Zbl
[6] Dzh. Bek, B. Blekuell, Ch. Sent-Kler, Inverse Heat Conduction: Ill-Posed Problems, Wiley, N.Y., 1985
[7] E. A. Artyukhin, “Reconstruction of the temperature dependence of the thermal conductivity coefficient from the solution of the inverse problem”, Teplofiz. Vysok. Temper., 19:5 (1981), 963–967 (in Russian)
[8] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Extreme methods for solving ill-posed problems and their application to inverse problems of heat transfer, Nauka, M., 1988 (in Russian)
[9] S. A. Kolesnik, “A method for numerical solution of the inverse nonlinear problems to recover the components of the thermal conductivity tensor of anisotropic materials”, Vychisl. Tekhnol., 18:1 (2013), 34–44 (in Russian)
[10] A. V. Penenko, “Discrete-analytical schemes for solving the inverse coefficient problem of heat conduction of layered media by the gradient methods”, Sibir. Zh. Vychisl. Math., 15:4 (2012), 393–408 (in Russian) | Zbl
[11] S. I. Kabanikhin, A. Gasanov, A. V. Penenko, “A gradient descent method for solving the inverse coefficient problem of heat conduction”, Sibir. Zh. Vychisl. Math., 11:1 (2008), 41–54 (in Russian) | Zbl
[12] P. N. Vabishchevich, A. Yu. Denisenko, “Numerical solution of the inverse coefficient problem for the nonlinear parabolic equation”, Mat. Model., 1:8 (1989), 116–126 | MR
[13] W. L. Chen, H. M. Chou, Y. C. Yang, “An inverse problem in estimating the space-dependent thermal conductivity of a functionally graded hollow cylinder”, Composites: Part B, 50 (2013), 112–119 | DOI
[14] V. Isakov, S. Bindermann, “Identification of the diffusion coefficient in a one dimensional parabolic equation”, Inverse Problems, 2000, no. 6, 665–680 | DOI | MR | Zbl
[15] M. Raudensky, K. A. Woodbary, J. Kral, “Genetic algorithm in solution of inverse heat conduction problems”, Numer. Heat Transfer. B, 28 (1995), 293–306 | DOI
[16] P. G. Danilaev, Inverse coefficient problems for parabolic type equations and their applications, UNIPRESS, Kazan', 1998 (in Russian)
[17] P. G. Danilaev, “Comparison of two regularizing solution algorithms for an inverse coefficient problem”, Izv. Vyssh. Uchebn. Zaved. Math., 47:5 (2003), 3–8 (in Russian) | MR | Zbl
[18] A. N. Naumov, “Solution of an inverse coefficient problem for the filtration equation”, Keldysh Institute preprints, 2006, 006, 29 pp.
[19] Yu. M. Matsevityi, A. V. Multanovskii, “Simultaneous identification of thermophysical characteristics of superhard materials”, Teplofiz. Vysok. Temper., 28:5 (1990), 924–929
[20] A. O. Vatul'yan, S. A. Nesterov, “An approach to solving the inverse coefficient problem of heat conduction”, Ekolog. Vestnik Nauchn. Tsentrov ChES, 15:1 (2018), 50–60 (in Russian)
[21] V. P. Tanana, A. I. Sidikova, “Approximate solution of the inverse boundary value problem for a system of differential equations of parabolic type and an error estimate for this solution”, Trudy Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk, 25, no. 3, 2019, 247–264 (in Russian)
[22] A. I. Sidikova, “On the study of an inverse boundary value problem for the heat equation”, Sibir. Zh. Vychisl. Math., 2019, no. 1, 81–98 (in Russian) | MR
[23] A. F. Albu, V. I. Zubov, “On the reconstruction of the coefficient of thermal conductivity of a substance by the temperature field”, Zh. Vychisl. Matemat. i Matemat. Fiziki, 58:10 (2018), 1640–1655 (in Russian)
[24] P. N. Vabishchevich, M. V. Klibanov, “Computational identification of the leading coefficient of a parabolic equation”, Differenstial'nye Uravneniya, 52:7 (2016), 896–903 (in Russian)
[25] A. O. Vatul'yan, Inverse problems in mechanics of deformed solids, Fizmatlit, M., 2007 (in Russian)
[26] A. G. Yagola, Van Yanfei, I. E. Stepanova, V. N. Titarenko, Inverse problems and methods for their solution, BINOM, M., 2014 (in Russian)
[27] I. V. Boikov, V. A. Ryazantsev, “An approximate method for determining the thermal conductivity coefficient”, Zh. Srednevolzh. Mat. Obshch., 21:2 (2019), 149–163 (in Russian)
[28] I. V. Boikov, “A continuous method for solving nonlinear operator equations”, Differenstial'nye Uravneniya, 48:9 (2012), 1308–1314 (in Russian) | MR | Zbl
[29] Yu. L. Daletskii, M. G. Krein, Stability of solutions to differential equations in Banach spaces, Fizmatgiz, M., 1970 (in Russian)
[30] A. D. Polyanin, Handbook on linear equations of mathematical physics, Fizmatlit, M., 2001 (in Russian)
[31] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobel'kov, Numerical methods, BINOM, M., 2008 (in Russian) | MR
[32] S. D. Eidel'man, Parabolic systems, Nauka, M., 1964 (in Russian) | MR