An approximate method for solving the inverse coefficient problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 5-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method is constructed for recovering a variable coefficient in the Cauchy problem and also in the initial boundary value problem for the one-dimensional heat equation. The desired coefficient is assumed to be time-dependent, but not space-dependent. Our approach is based on the construction of an auxiliary ordinary differential equation for the unknown coefficient and the subsequent solving it by some numerical method of solving ordinary differential equations. The apparatus of Lyapunov stability theory is used as well. The main advantages of the proposed method are its simplicity and stability with respect to the initial data perturbations. For the implementation, the method requires some additional information on the solution of the original heat equation at no more than finitely many points. The efficiency of the proposed approach is illustrated by solving several model examples.
Mots-clés : inverse coefficient problem
Keywords: parabolic equation, logarithmic norm, Lyapunov stability. .
@article{SJIM_2021_24_2_a0,
     author = {I. V. Boykov and V. A. Ryazantsev},
     title = {An approximate method for solving the inverse coefficient problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--22},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a0/}
}
TY  - JOUR
AU  - I. V. Boykov
AU  - V. A. Ryazantsev
TI  - An approximate method for solving the inverse coefficient problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 5
EP  - 22
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a0/
LA  - ru
ID  - SJIM_2021_24_2_a0
ER  - 
%0 Journal Article
%A I. V. Boykov
%A V. A. Ryazantsev
%T An approximate method for solving the inverse coefficient problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 5-22
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a0/
%G ru
%F SJIM_2021_24_2_a0
I. V. Boykov; V. A. Ryazantsev. An approximate method for solving the inverse coefficient problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 5-22. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a0/

[1] M. M. Lavrent'ev, V. G. Vasil'ev, V. G. Romanov, Multidimensional Inverse Problems for Differential Equations, Nauka, Novosibirsk, 1969 (in Russian)

[2] S. I. Kabanikhin, Inverse, Ill-Posed Problems, Sibir. Nauchn. Izd., Novosibirsk, 2009 (in Russian)

[3] A. Hanasoğlu Hasanov, V. G. Romanov, Introduction to Inverse Problems for Differential Equations, Springer Internat. Publ., Heidelberg, 2017 | MR

[4] A. M. Denisov, Introduction to the theory of inverse problems, Izd. Moskov. Gos. Univ., M., 1994 (in Russian) | MR

[5] L. Beilina, M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer-Verl, N.Y., 2012 | Zbl

[6] Dzh. Bek, B. Blekuell, Ch. Sent-Kler, Inverse Heat Conduction: Ill-Posed Problems, Wiley, N.Y., 1985

[7] E. A. Artyukhin, “Reconstruction of the temperature dependence of the thermal conductivity coefficient from the solution of the inverse problem”, Teplofiz. Vysok. Temper., 19:5 (1981), 963–967 (in Russian)

[8] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Extreme methods for solving ill-posed problems and their application to inverse problems of heat transfer, Nauka, M., 1988 (in Russian)

[9] S. A. Kolesnik, “A method for numerical solution of the inverse nonlinear problems to recover the components of the thermal conductivity tensor of anisotropic materials”, Vychisl. Tekhnol., 18:1 (2013), 34–44 (in Russian)

[10] A. V. Penenko, “Discrete-analytical schemes for solving the inverse coefficient problem of heat conduction of layered media by the gradient methods”, Sibir. Zh. Vychisl. Math., 15:4 (2012), 393–408 (in Russian) | Zbl

[11] S. I. Kabanikhin, A. Gasanov, A. V. Penenko, “A gradient descent method for solving the inverse coefficient problem of heat conduction”, Sibir. Zh. Vychisl. Math., 11:1 (2008), 41–54 (in Russian) | Zbl

[12] P. N. Vabishchevich, A. Yu. Denisenko, “Numerical solution of the inverse coefficient problem for the nonlinear parabolic equation”, Mat. Model., 1:8 (1989), 116–126 | MR

[13] W. L. Chen, H. M. Chou, Y. C. Yang, “An inverse problem in estimating the space-dependent thermal conductivity of a functionally graded hollow cylinder”, Composites: Part B, 50 (2013), 112–119 | DOI

[14] V. Isakov, S. Bindermann, “Identification of the diffusion coefficient in a one dimensional parabolic equation”, Inverse Problems, 2000, no. 6, 665–680 | DOI | MR | Zbl

[15] M. Raudensky, K. A. Woodbary, J. Kral, “Genetic algorithm in solution of inverse heat conduction problems”, Numer. Heat Transfer. B, 28 (1995), 293–306 | DOI

[16] P. G. Danilaev, Inverse coefficient problems for parabolic type equations and their applications, UNIPRESS, Kazan', 1998 (in Russian)

[17] P. G. Danilaev, “Comparison of two regularizing solution algorithms for an inverse coefficient problem”, Izv. Vyssh. Uchebn. Zaved. Math., 47:5 (2003), 3–8 (in Russian) | MR | Zbl

[18] A. N. Naumov, “Solution of an inverse coefficient problem for the filtration equation”, Keldysh Institute preprints, 2006, 006, 29 pp.

[19] Yu. M. Matsevityi, A. V. Multanovskii, “Simultaneous identification of thermophysical characteristics of superhard materials”, Teplofiz. Vysok. Temper., 28:5 (1990), 924–929

[20] A. O. Vatul'yan, S. A. Nesterov, “An approach to solving the inverse coefficient problem of heat conduction”, Ekolog. Vestnik Nauchn. Tsentrov ChES, 15:1 (2018), 50–60 (in Russian)

[21] V. P. Tanana, A. I. Sidikova, “Approximate solution of the inverse boundary value problem for a system of differential equations of parabolic type and an error estimate for this solution”, Trudy Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk, 25, no. 3, 2019, 247–264 (in Russian)

[22] A. I. Sidikova, “On the study of an inverse boundary value problem for the heat equation”, Sibir. Zh. Vychisl. Math., 2019, no. 1, 81–98 (in Russian) | MR

[23] A. F. Albu, V. I. Zubov, “On the reconstruction of the coefficient of thermal conductivity of a substance by the temperature field”, Zh. Vychisl. Matemat. i Matemat. Fiziki, 58:10 (2018), 1640–1655 (in Russian)

[24] P. N. Vabishchevich, M. V. Klibanov, “Computational identification of the leading coefficient of a parabolic equation”, Differenstial'nye Uravneniya, 52:7 (2016), 896–903 (in Russian)

[25] A. O. Vatul'yan, Inverse problems in mechanics of deformed solids, Fizmatlit, M., 2007 (in Russian)

[26] A. G. Yagola, Van Yanfei, I. E. Stepanova, V. N. Titarenko, Inverse problems and methods for their solution, BINOM, M., 2014 (in Russian)

[27] I. V. Boikov, V. A. Ryazantsev, “An approximate method for determining the thermal conductivity coefficient”, Zh. Srednevolzh. Mat. Obshch., 21:2 (2019), 149–163 (in Russian)

[28] I. V. Boikov, “A continuous method for solving nonlinear operator equations”, Differenstial'nye Uravneniya, 48:9 (2012), 1308–1314 (in Russian) | MR | Zbl

[29] Yu. L. Daletskii, M. G. Krein, Stability of solutions to differential equations in Banach spaces, Fizmatgiz, M., 1970 (in Russian)

[30] A. D. Polyanin, Handbook on linear equations of mathematical physics, Fizmatlit, M., 2001 (in Russian)

[31] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobel'kov, Numerical methods, BINOM, M., 2008 (in Russian) | MR

[32] S. D. Eidel'man, Parabolic systems, Nauka, M., 1964 (in Russian) | MR