Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_1_a9, author = {A. S. Ustiuzhaninova and M. V. Turbin}, title = {Trajectory and global attractors for a modified {Kelvin---Voigt} model}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {126--138}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a9/} }
TY - JOUR AU - A. S. Ustiuzhaninova AU - M. V. Turbin TI - Trajectory and global attractors for a modified Kelvin---Voigt model JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 126 EP - 138 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a9/ LA - ru ID - SJIM_2021_24_1_a9 ER -
A. S. Ustiuzhaninova; M. V. Turbin. Trajectory and global attractors for a modified Kelvin---Voigt model. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 126-138. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a9/
[1] V. A. Pavlovskii, “To the question of theoretical description of weak aqueous solutions of polymers”, Dokl. Akad. Nauk SSSR, 200:4 (1971), 809–812 (in Russian)
[2] M. V. Turbin, A. S. Ustiuzhaninova, “The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions”, Russian Math., 63:8 (2019), 54–69 | DOI | DOI | Zbl
[3] P. I. Plotnikov, M. V. Turbin, A. S. Ustiuzhaninova, “Existence theorem for a weak solution of the optimal feedback control problem for the modified Kelvin-Voigt model of weakly concentrated aqueous polymer solutions”, Dokl. Math., 100:2 (2019), 433–435 | DOI | DOI | Zbl
[4] V. Zvyagin, D. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodinamics, Walter de Gruyter, Berlin, 2008 | DOI | MR
[5] V. G. Zvyagin, S. K. Kondrat'ev, Attractors of the equations of models of motion of viscoelastic media, Izd-vo Voronezh. Gos. Univ., Voronezh, 2010 (in Russian)
[6] V. G. Zvyagin, M. V. Turbin, Mathematical problems of hydrodynamics of viscoelastic media, KRASAND, M., 2012 (in Russian)
[7] J. Simon, “Compact sets in the space $L^p (0, T; B)$”, Ann. Mat. Pur. Appl., 146 (1986), 65–96 | DOI | MR
[8] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North Holland, Amsterdam–N.Y.–Oxford, 1979 | MR | Zbl | Zbl
[9] V. G. Zvyagin, M. V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin-Voigt fluids”, J. Math. Sci., 168 (2010), 157–308 | DOI | MR | Zbl