Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 103-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.
Keywords: asymptotic analysis, antiplane shear, inhomogeneous elastic body, thin rigid inclusion, thin elastic inclusion, crack. .
@article{SJIM_2021_24_1_a7,
     author = {E. M. Rudoy and H. Itou and N. P. Lazarev},
     title = {Asymptotic justification of the models of thin inclusions in an elastic body in the  antiplane shear problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {103--119},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a7/}
}
TY  - JOUR
AU  - E. M. Rudoy
AU  - H. Itou
AU  - N. P. Lazarev
TI  - Asymptotic justification of the models of thin inclusions in an elastic body in the  antiplane shear problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 103
EP  - 119
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a7/
LA  - ru
ID  - SJIM_2021_24_1_a7
ER  - 
%0 Journal Article
%A E. M. Rudoy
%A H. Itou
%A N. P. Lazarev
%T Asymptotic justification of the models of thin inclusions in an elastic body in the  antiplane shear problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 103-119
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a7/
%G ru
%F SJIM_2021_24_1_a7
E. M. Rudoy; H. Itou; N. P. Lazarev. Asymptotic justification of the models of thin inclusions in an elastic body in the  antiplane shear problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 103-119. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a7/

[1] Y. Benveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mech. Mater., 33 (2001), 309–323 | DOI

[2] D. Caillerie, J. C. Nedelec, “The effect of a thin inclusion of high rigidity in an elastic body”, Math. Meth. Appl. Sci., 2:3 (1980), 251–270 | DOI | MR | Zbl

[3] S. Dumont, F. Lebon, R. Rizzoni, “Imperfect interfaces with graded materials and unilateral conditions: theoretical and numerical study”, Math. Mech. Solids, 23:3 (2018), 445–460 | DOI | MR | Zbl

[4] G. Geymonat, F. Krasucki, S. Lenci, “Mathematical analysis of a bonded joint with a soft thin adhesive”, Math. Mech. Solids, 4:2 (1999), 201–225 | DOI | MR | Zbl

[5] M. Serpilli, R. Rizzoni, F. Lebon, S. Dumont, “An asymptotic derivation of a general imperfect interface law for linear multiphysics composites”, Internat. J. Solids Structures, 180-181 (2019), 97–107 | DOI

[6] A. Y. Zemlyanova, S. G. Mogilevskaya, “Circular inhomogeneity with Steigmann-Ogden interface: Local fields, neutrality, and Maxwell's type approximation formula”, Internat. J. Solids Structures, 135 (2018), 85–98 | DOI

[7] V. V. Shcherbakov, “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR

[8] A. M. Khludnev, “Asymptotics of anisotropic weakly curved inclusions in an elastic body”, J. Appl. Indust. Math., 11 (2017), 88–98 | DOI | MR | Zbl

[9] A. Khludnev, “On modeling elastic bodies with defects”, Siber. Electronic Math. Reports, 15 (2018), 153–166 | MR | Zbl

[10] A. Khludnev, “On thin Timoshenko inclusions in elastic bodies with defects”, Arch. Appl. Mechanics, 89:8 (2019), 1691–1704 | DOI | MR

[11] E. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Mech., 68 (2017), 19 | MR | Zbl

[12] S. Baranova, S. G. Mogilevskaya, V. Mantič, S. Jiménez-Alfaro, “Analysis of the antiplane problem with an embedded zero thickness layer described by the Gurtin-Murdoch Model”, J. Elasticity, 140:2 (2020), 171–195 | DOI | MR | Zbl

[13] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, Internat. J. Solids Structures, 182-183 (2020), 100–110 | DOI

[14] E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, J. Appl. Indust. Math., 10:2 (2016), 264–276 | DOI | MR

[15] E. M. Rudoy, N. P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334:5 (2018), 18–26 | DOI | MR | Zbl

[16] N. A. Kazarinov, E. M. Rudoi, V. Yu. Slesarenko, V. V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Comput. Math. Math. Phys., 58:5 (2018), 761–774 (in Russian) | DOI | MR | Zbl

[17] E. M. Rudoy, “Domain decomposition method for a model crack problem with a possible contact of crack edges”, Comput. Math. Math. Phys., 55:2 (2015), 305–316 | DOI | MR | Zbl

[18] M. Hintermüller, V. Kovtunenko, K. Kunisch, “The primal-dual active set method for a crack problem with non-penetration”, J. Appl. Math., 69 (2004), 1–26 | MR | Zbl

[19] E. V. Vtorushin, “Numerical investigation of a model problem for the Poisson equation with inequality constraints in a domain with a cut”, J. Appl. Indust. Math., 2:1 (2008), 143–150 | DOI | MR

[20] Yu. N. Rabotnov, Mechanics of Deformable Solid Body, Nauka, M., 1988 (in Russian)

[21] W. T. Ang, D. L. Clements, “On some crack problems for inhomogeneous elastic materials”, Internat. J. Solids Structures, 23:8 (1987), 1089–1104 | DOI | Zbl

[22] N. Chinchaladze, “On a vibration problem of antiplane strain (shear) of orthotropic non-homogeneous prismatic shell-like bodies”, Complex Var. Elliptic Equ., 63:6 (2018), 886–895 | DOI | MR | Zbl

[23] D. L. Clements, “On a displacement based solution to an antiplane crack problem for inhomogeneous anisotropic elastic materials”, J. Elasticity, 103:2 (2011), 137–152 | DOI | MR | Zbl

[24] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Springer-Verl., Berlin, 2012 | MR | Zbl

[25] V. G. Maz'ya, S. V. Poborchi, Differentiable Functions on Bad Domains, World Sci. Publ., 1998 | MR

[26] E. M. Rudoy, “Asymptotic modelling of bonded plates by a soft thin adhesive layer”, Siber. Elect. Math. Reports, 17 (2020), 615–625 | MR | Zbl

[27] A. Furtsev, E. Rudoy, “Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates”, Internat. J. Solids Struct., 202 (2020), 562–574 | DOI

[28] L. K. Evans, R. F. Gariepi, Measure theory and fine properties of functions, Nauchn. kniga, Novosibirsk, 2002 (in Russian)

[29] H. Itou, A. M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl

[30] A. M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, M., 2010 (in Russian)

[31] F. Dal Corso, S. Shahzad, D. Bigoni, “Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Pt. I: Formulation and full-field solution”, Internat. J. Solids Structures, 85-86 (2018), 67–75

[32] F. Dal Corso, S. Shahzad, D. Bigoni, “Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Part II: Singularities, annihilation and invisibility”, Internat. J. Solids Structures, 85-86 (2018), 76–88

[33] E. M. Rudoi, “Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions”, Comput. Math. Math. Phys., 56:3 (2016), 450–459 (in Russian) | DOI | MR | MR | Zbl

[34] I. B. Simonenko, “Zadachi elektrostatiki v neodnorodnoi srede. Part I. Sluchai tonkogo dielektrika s bol-shoi dielektricheskoi postoyannoi”, Differents. Uravneniya, 10:2 (1974), 301–309 (in Russian) | Zbl

[35] I. B. Simonenko, “Problems of electrostatics in a nonhomogeneous medium. Part II. The case of a thin dielectric with a high dielectric constant”, Differents. Uravneniya, 11:10 (1975), 1870–1878 (in Russian) | MR | Zbl

[36] I. B. Simonenko, “Limit problem in thermal conductivity in a nonhomogeneous medium”, Siber. Math. J., 16:6 (1975), 991–998 | DOI | MR

[37] N. Lazarev, H. Itou, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff-Love plates with a crack”, Math. Mech. Solids, 24:12 (2019), 3743–3752 | DOI | MR | Zbl

[38] E. M. Rudoy, V. V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Siber. Elect. Math. Reports, 13 (2016), 395–410 | MR | Zbl

[39] M. E. Gurtin, A. I. Murdoch, “A continuum theory of elastic material surfaces”, Arch. Rat. Mech. Analysis, 57:4 (1975), 291–323 | DOI | MR | Zbl

[40] V. A. Eremeyev, “On effective properties of materials at the nano- and microscales considering surface effects”, Acta Mechanica, 227:1 (2016), 29–42 | DOI | MR | Zbl

[41] A. M. Khludnev, V. V. Shcherbakov, “Singular path-independent energy integrals for elastic bodies with Euler-Bernoulli inclusions”, Math. Mech. Solids, 22:11 (2017), 2180–2195 | DOI | MR | Zbl

[42] A. M. Khludnev, “On thin inclusions in elastic bodies with defects”, Z. Angew. Math. Mech., 70:2 (2019), 45 | MR | Zbl

[43] A. I. Furtsev, “A contact problem for a plate and a beam in presence of adhesion”, J. Appl. Indust. Math., 13:2 (2019), 208–218 | DOI | MR | Zbl

[44] J. Luo, X. Wang, “On the anti-plane shear of an elliptic nano inhomogeneity”, Eur. J. Mech. A. Solids, 28 (2009), 926–934 | DOI | Zbl

[45] M. Dai, P. Schiavone, C. Gao, “Prediction of the stress field and effective shear modulus of composites containing periodic inclusions incorporating interface effects in anti-plane shear”, J. Elasticity, 125:2 (2016), 217–230 | DOI | MR | Zbl

[46] M. Serpilli, “On modeling interfaces in linear micropolar composites”, Math. Mech. Solids, 23:4 (2018), 667–685 | DOI | MR | Zbl