Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 103-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.
Keywords: asymptotic analysis, antiplane shear, inhomogeneous elastic body, thin rigid inclusion, thin elastic inclusion, crack. .
@article{SJIM_2021_24_1_a7,
     author = {E. M. Rudoy and H. Itou and N. P. Lazarev},
     title = {Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {103--119},
     year = {2021},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a7/}
}
TY  - JOUR
AU  - E. M. Rudoy
AU  - H. Itou
AU  - N. P. Lazarev
TI  - Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 103
EP  - 119
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a7/
LA  - ru
ID  - SJIM_2021_24_1_a7
ER  - 
%0 Journal Article
%A E. M. Rudoy
%A H. Itou
%A N. P. Lazarev
%T Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 103-119
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a7/
%G ru
%F SJIM_2021_24_1_a7
E. M. Rudoy; H. Itou; N. P. Lazarev. Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 103-119. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a7/

[1] Y. Benveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mech. Mater., 33 (2001), 309–323 | DOI

[2] D. Caillerie, J. C. Nedelec, “The effect of a thin inclusion of high rigidity in an elastic body”, Math. Meth. Appl. Sci., 2:3 (1980), 251–270 | DOI | MR | Zbl

[3] S. Dumont, F. Lebon, R. Rizzoni, “Imperfect interfaces with graded materials and unilateral conditions: theoretical and numerical study”, Math. Mech. Solids, 23:3 (2018), 445–460 | DOI | MR | Zbl

[4] G. Geymonat, F. Krasucki, S. Lenci, “Mathematical analysis of a bonded joint with a soft thin adhesive”, Math. Mech. Solids, 4:2 (1999), 201–225 | DOI | MR | Zbl

[5] M. Serpilli, R. Rizzoni, F. Lebon, S. Dumont, “An asymptotic derivation of a general imperfect interface law for linear multiphysics composites”, Internat. J. Solids Structures, 180-181 (2019), 97–107 | DOI

[6] A. Y. Zemlyanova, S. G. Mogilevskaya, “Circular inhomogeneity with Steigmann-Ogden interface: Local fields, neutrality, and Maxwell's type approximation formula”, Internat. J. Solids Structures, 135 (2018), 85–98 | DOI

[7] V. V. Shcherbakov, “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR

[8] A. M. Khludnev, “Asymptotics of anisotropic weakly curved inclusions in an elastic body”, J. Appl. Indust. Math., 11 (2017), 88–98 | DOI | MR | Zbl

[9] A. Khludnev, “On modeling elastic bodies with defects”, Siber. Electronic Math. Reports, 15 (2018), 153–166 | MR | Zbl

[10] A. Khludnev, “On thin Timoshenko inclusions in elastic bodies with defects”, Arch. Appl. Mechanics, 89:8 (2019), 1691–1704 | DOI | MR

[11] E. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Mech., 68 (2017), 19 | MR | Zbl

[12] S. Baranova, S. G. Mogilevskaya, V. Mantič, S. Jiménez-Alfaro, “Analysis of the antiplane problem with an embedded zero thickness layer described by the Gurtin-Murdoch Model”, J. Elasticity, 140:2 (2020), 171–195 | DOI | MR | Zbl

[13] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, Internat. J. Solids Structures, 182-183 (2020), 100–110 | DOI

[14] E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, J. Appl. Indust. Math., 10:2 (2016), 264–276 | DOI | MR

[15] E. M. Rudoy, N. P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334:5 (2018), 18–26 | DOI | MR | Zbl

[16] N. A. Kazarinov, E. M. Rudoi, V. Yu. Slesarenko, V. V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Comput. Math. Math. Phys., 58:5 (2018), 761–774 (in Russian) | DOI | MR | Zbl

[17] E. M. Rudoy, “Domain decomposition method for a model crack problem with a possible contact of crack edges”, Comput. Math. Math. Phys., 55:2 (2015), 305–316 | DOI | MR | Zbl

[18] M. Hintermüller, V. Kovtunenko, K. Kunisch, “The primal-dual active set method for a crack problem with non-penetration”, J. Appl. Math., 69 (2004), 1–26 | MR | Zbl

[19] E. V. Vtorushin, “Numerical investigation of a model problem for the Poisson equation with inequality constraints in a domain with a cut”, J. Appl. Indust. Math., 2:1 (2008), 143–150 | DOI | MR

[20] Yu. N. Rabotnov, Mechanics of Deformable Solid Body, Nauka, M., 1988 (in Russian)

[21] W. T. Ang, D. L. Clements, “On some crack problems for inhomogeneous elastic materials”, Internat. J. Solids Structures, 23:8 (1987), 1089–1104 | DOI | Zbl

[22] N. Chinchaladze, “On a vibration problem of antiplane strain (shear) of orthotropic non-homogeneous prismatic shell-like bodies”, Complex Var. Elliptic Equ., 63:6 (2018), 886–895 | DOI | MR | Zbl

[23] D. L. Clements, “On a displacement based solution to an antiplane crack problem for inhomogeneous anisotropic elastic materials”, J. Elasticity, 103:2 (2011), 137–152 | DOI | MR | Zbl

[24] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Springer-Verl., Berlin, 2012 | MR | Zbl

[25] V. G. Maz'ya, S. V. Poborchi, Differentiable Functions on Bad Domains, World Sci. Publ., 1998 | MR

[26] E. M. Rudoy, “Asymptotic modelling of bonded plates by a soft thin adhesive layer”, Siber. Elect. Math. Reports, 17 (2020), 615–625 | MR | Zbl

[27] A. Furtsev, E. Rudoy, “Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates”, Internat. J. Solids Struct., 202 (2020), 562–574 | DOI

[28] L. K. Evans, R. F. Gariepi, Measure theory and fine properties of functions, Nauchn. kniga, Novosibirsk, 2002 (in Russian)

[29] H. Itou, A. M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl

[30] A. M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, M., 2010 (in Russian)

[31] F. Dal Corso, S. Shahzad, D. Bigoni, “Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Pt. I: Formulation and full-field solution”, Internat. J. Solids Structures, 85-86 (2018), 67–75

[32] F. Dal Corso, S. Shahzad, D. Bigoni, “Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Part II: Singularities, annihilation and invisibility”, Internat. J. Solids Structures, 85-86 (2018), 76–88

[33] E. M. Rudoi, “Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions”, Comput. Math. Math. Phys., 56:3 (2016), 450–459 (in Russian) | DOI | MR | MR | Zbl

[34] I. B. Simonenko, “Zadachi elektrostatiki v neodnorodnoi srede. Part I. Sluchai tonkogo dielektrika s bol-shoi dielektricheskoi postoyannoi”, Differents. Uravneniya, 10:2 (1974), 301–309 (in Russian) | Zbl

[35] I. B. Simonenko, “Problems of electrostatics in a nonhomogeneous medium. Part II. The case of a thin dielectric with a high dielectric constant”, Differents. Uravneniya, 11:10 (1975), 1870–1878 (in Russian) | MR | Zbl

[36] I. B. Simonenko, “Limit problem in thermal conductivity in a nonhomogeneous medium”, Siber. Math. J., 16:6 (1975), 991–998 | DOI | MR

[37] N. Lazarev, H. Itou, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff-Love plates with a crack”, Math. Mech. Solids, 24:12 (2019), 3743–3752 | DOI | MR | Zbl

[38] E. M. Rudoy, V. V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Siber. Elect. Math. Reports, 13 (2016), 395–410 | MR | Zbl

[39] M. E. Gurtin, A. I. Murdoch, “A continuum theory of elastic material surfaces”, Arch. Rat. Mech. Analysis, 57:4 (1975), 291–323 | DOI | MR | Zbl

[40] V. A. Eremeyev, “On effective properties of materials at the nano- and microscales considering surface effects”, Acta Mechanica, 227:1 (2016), 29–42 | DOI | MR | Zbl

[41] A. M. Khludnev, V. V. Shcherbakov, “Singular path-independent energy integrals for elastic bodies with Euler-Bernoulli inclusions”, Math. Mech. Solids, 22:11 (2017), 2180–2195 | DOI | MR | Zbl

[42] A. M. Khludnev, “On thin inclusions in elastic bodies with defects”, Z. Angew. Math. Mech., 70:2 (2019), 45 | MR | Zbl

[43] A. I. Furtsev, “A contact problem for a plate and a beam in presence of adhesion”, J. Appl. Indust. Math., 13:2 (2019), 208–218 | DOI | MR | Zbl

[44] J. Luo, X. Wang, “On the anti-plane shear of an elliptic nano inhomogeneity”, Eur. J. Mech. A. Solids, 28 (2009), 926–934 | DOI | Zbl

[45] M. Dai, P. Schiavone, C. Gao, “Prediction of the stress field and effective shear modulus of composites containing periodic inclusions incorporating interface effects in anti-plane shear”, J. Elasticity, 125:2 (2016), 217–230 | DOI | MR | Zbl

[46] M. Serpilli, “On modeling interfaces in linear micropolar composites”, Math. Mech. Solids, 23:4 (2018), 667–685 | DOI | MR | Zbl