Regularization of the solution of a Cauchy problem for a hyperbolic equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 89-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a hyperbolic equation with variable coefficients, we construct a regularizing algorithm to solve the problem of continuation of the wave field from the boundary of the half-plane inside it. We introduce some $N$-approximate solutions and establish their convergence to the exact solution. Under consideration is the case when the problem data have an error of $\delta$. We find an estimate of the accuracy of the approximate solutions and prove the convergence of the approximate solutions to the unique solution as $\delta \to 0$.
Keywords: a Cauchy problem, wave field continuation, regularization. .
@article{SJIM_2021_24_1_a6,
     author = {V. G. Romanov and T.V. Bugueva and V. A. Dedok},
     title = {Regularization of the solution of a {Cauchy} problem for a hyperbolic equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {89--102},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a6/}
}
TY  - JOUR
AU  - V. G. Romanov
AU  - T.V. Bugueva
AU  - V. A. Dedok
TI  - Regularization of the solution of a Cauchy problem for a hyperbolic equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 89
EP  - 102
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a6/
LA  - ru
ID  - SJIM_2021_24_1_a6
ER  - 
%0 Journal Article
%A V. G. Romanov
%A T.V. Bugueva
%A V. A. Dedok
%T Regularization of the solution of a Cauchy problem for a hyperbolic equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 89-102
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a6/
%G ru
%F SJIM_2021_24_1_a6
V. G. Romanov; T.V. Bugueva; V. A. Dedok. Regularization of the solution of a Cauchy problem for a hyperbolic equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 89-102. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a6/

[1] F. John, “Continuous dependence on data for solutions of partial differential equations with a prescribed bound”, Communs. Pure Appl. Math., 1960, no. 4, 551–585 | DOI | MR | Zbl

[2] F. John, Differential Equations with Approximate and Improper Data. Lectures, New York Univer, N.Y., 1995

[3] R. Kurant, Partial differential equations, Mir, M., 1964 (in Russian)

[4] V. G. Romanov, Integral Geometry and Inverse Problems for Hyperbolic Equations, Springer-Verl., Berlin, 1974 | Zbl

[5] M. M. Lavrent'ev, V. G. Romanov, S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, Amer. Math. Soc., Providence, 1986 | MR | MR

[6] D. Finch, S. K. Patch, Rakesh, “Determining a function from its mean values over a family of spheres”, SIAM J. Math. Anal., 35:5 (2004), 1213–1240 | DOI | MR | Zbl

[7] F. Natterer, “Photo-acoustic inversion in convex domains”, Inverse Probl. Imaging, 6:2 (2012), 1–6 | DOI | MR

[8] V. P. Palamodov, “Reconstruction from limited data of arc means”, J. Fourier Anal. Appl., 6:1 (2000), 25–42 | DOI | MR | Zbl

[9] W. W. Symes, “A trace theorem for solutions of the wave equation, and the remote determination of acoustic sources”, Math. Meth. Appl. Sci., 5 (1983), 131–152 | DOI | MR | Zbl

[10] L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute of Math. Sci., New York Univ., N. Y., 1974 | MR | Zbl

[11] L. V. Ovsyannikov, “A nonlinear Cauchy problem in a scale of Banach spaces”, Sov. Math., Dokl., 12:4 (1971), 1497–1502 | MR | Zbl

[12] V. G. Romanov, “Regularization of a solution to the Cauchy problem with data on a timelike plane”, Siberian Math. J., 59:4 (2018), 694–704 | DOI | MR | Zbl

[13] V. G. Romanov, T. V. Bugueva, V. A. Dedok, “Regularization of the solution of the Cauchy problem: the quasi-reversibility method”, J. Appl. Ind. Math., 12:4 (2018), 716–728 | DOI | MR | Zbl

[14] R. Lattes, Zh. L. Lions, The Method of Quasi-Reversibility. Applications to Partial Differential Equations, American Elsevier, N.Y., 1970 | MR

[15] V. G. Romanov, “Regularization of a continuation problem for electrodynamic equations”, J. Inverse Ill-Posed Probl., 2020 | DOI | MR

[16] V. G. Romanov, “A generalized Gronwall-Bellman inequality”, Siberian Math. J., 61:3 (2020), 532–537 | DOI | MR | Zbl