@article{SJIM_2021_24_1_a4,
author = {V. V. Neverov},
title = {Global solvability of one-dimensional axially-symmetric micropolar fluid equations},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {67--77},
year = {2021},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a4/}
}
V. V. Neverov. Global solvability of one-dimensional axially-symmetric micropolar fluid equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 67-77. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a4/
[1] V. V. Shelukhin, V. V. Neverov, “Flow of micropolar and viscoplastic fluids in a Hele-Shaw cell”, J. Appl. Mech. Tech. Phys., 55:6 (2014), 905–916 | DOI | MR | Zbl
[2] E. Cosserat, F. Cosserat, Theorie des Corps Deformable, A. Hermann et fils, Paris, 1909
[3] A. C. Eringen, Microcontinuum Field Theories, v. I, II, Springer-Verl, N.Y., 1999 | MR | Zbl
[4] G. Lukaszewicz, Micropolar Fluids. Theory, Applications, Birkhäuser Boston, Boston, 1999 | MR | Zbl
[5] Bo-Qing Dong, Zhifei Zhang, “Global regularity of the 2D micropolar fluid flows with zero angular viscosity”, J. Differ. Equ., 249 (2010), 200–213 | DOI | MR | Zbl
[6] V. V. Shelukhin, M. Ružička, “On Cosserat-Bingham fluids”, Z. Angew. Math. Mech., 93:1 (2013), 57–72 | DOI | MR | Zbl
[7] V. V. Shelukhin, N. V. Chemetov, “Global solvability of the one-dimensional Cosserat-Bingham fluid equations”, J. Math. Fluid Mech., 17:3 (2015), 495–511 | DOI | MR | Zbl
[8] Zhuan Ye, “Global existence of strong solution to the 3D micropolar equations with a damping term”, Appl. Math. Lett., 83 (2018), 188–193 | DOI | MR | Zbl
[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc., Providence, 1968 | MR | Zbl
[10] V. N. Monakhov, Boundary-Value Problems with Free Boundaries for Elliptic Systems of Equations, Translations of Mathematical Monographs, 57, Amer. Math. Soc., Providence, 1983 | DOI | MR | Zbl