Existence of a solution to a system of equations in variations in an optimal control problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 48-66

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimal control problem for some mathematical problem of a chemical reactor. We prove the existence of a solution to the system in variations which arises in deriving a necessary optimality condition in the form of the Pontryagin Maximum Principle.
Keywords: mathematical model, chemical reactor, optimal control, functional, necessary optimality condition, Pontryagin Maximum Principle.
@article{SJIM_2021_24_1_a3,
     author = {K. S. Musabekov},
     title = {Existence of a solution to a system of equations in variations in an optimal control problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {48--66},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a3/}
}
TY  - JOUR
AU  - K. S. Musabekov
TI  - Existence of a solution to a system of equations in variations in an optimal control problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 48
EP  - 66
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a3/
LA  - ru
ID  - SJIM_2021_24_1_a3
ER  - 
%0 Journal Article
%A K. S. Musabekov
%T Existence of a solution to a system of equations in variations in an optimal control problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 48-66
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a3/
%G ru
%F SJIM_2021_24_1_a3
K. S. Musabekov. Existence of a solution to a system of equations in variations in an optimal control problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 48-66. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a3/