Existence of a solution to a system of equations in variations in an optimal control problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 48-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimal control problem for some mathematical problem of a chemical reactor. We prove the existence of a solution to the system in variations which arises in deriving a necessary optimality condition in the form of the Pontryagin Maximum Principle.
Keywords: mathematical model, chemical reactor, optimal control, functional, necessary optimality condition, Pontryagin Maximum Principle.
@article{SJIM_2021_24_1_a3,
     author = {K. S. Musabekov},
     title = {Existence of a solution to a system of equations in variations in an optimal control problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {48--66},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a3/}
}
TY  - JOUR
AU  - K. S. Musabekov
TI  - Existence of a solution to a system of equations in variations in an optimal control problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 48
EP  - 66
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a3/
LA  - ru
ID  - SJIM_2021_24_1_a3
ER  - 
%0 Journal Article
%A K. S. Musabekov
%T Existence of a solution to a system of equations in variations in an optimal control problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 48-66
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a3/
%G ru
%F SJIM_2021_24_1_a3
K. S. Musabekov. Existence of a solution to a system of equations in variations in an optimal control problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 48-66. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a3/

[1] C. Georgakis, R. Aris, N. R. Amundson, “Studies in the control of tubular reactors”, Chemical Engng. Sci., 32:11 (1977), 1359–1387 | DOI

[2] K. S. Musabekov, “Theorems of existence of a solution to an optimal control problem of a chemical reactor”, Controlled processes and optimization. Controlled systems, 22, Novosibirsk, 1982, 30–50 (in Russian) | MR | Zbl

[3] V. S. Belonosov, T. I. Zelenyak, Nonlocal problems of theory of quasilinear parabolic equations, Izd. Novosib. Gos. Univ., Novosibirsk, 1975 (in Russian)

[4] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasilinear equations of parabolic type, Nauka, M., 1967 (in Russian)

[5] K. S. Musabekov, “Existence of an optimal control in a regularized problem with phase constraints”, Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform., 10:2 (2010), 61–74 (in Russian) | MR

[6] K. S. Musabekov, “The penalty method in an optimal control problem with a phase constraint”, Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform., 13:2 (2013), 86–98 (in Russian) | Zbl

[7] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, Mathematical theory of optimal processes, Nauka, M., 1961 (in Russian) | MR

[8] I. V. Girsanov, Lecture notes on mathematical theory of extremum problems, Moskov. Gos. Univ. Press, M., 1970 (in Russian)

[9] V. A. Solonnikov, “On boundary value problems on linear parabolic systems of differential equations of general kind”, Trudy Fiz. Mat. Inst. Steklov. Akad. Nauk. SSSR, 83, 1965, 3–162 (in Russian)

[10] Zh. Lerei, Yu. Shauder, “Topology and functional equations”, Uspekhi Mat. Nauk, 1:3–4 (1946), 71–95 (in Russian) | MR

[11] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear equations of elliptic type, Nauka, M., 1973 (in Russian) | MR