Dynamics of plane strains in heteromodular isotropic elastic media
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 18-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration are the features of nonlinear dynamics of a heteromodular elastic medium under the plane strain. A mathematical model of the heteromodular isotropic elastic medium is given by a stress-strain relation with variable elastic moduli that are nonanalytic functions of deformation invariants. In this case, we show that the two plane-polarized combined shock waves called quasi-longitudinal and quasi-transverse ones can appear in the material. To calculate the velocities of these waves, we obtain some formulas that include the parameters of both the prior deformed state and the boundary impact action. By example, we solve the two-dimensional self-similar boundary value problem concerning the reflection of a plane shock compression wave from a rigid obstacle and demonstrate how to use the information on the types of nonlinear waves in the heteromodular medium. We show that the nature of the wave fronts in the reflected wavepackage depends significantly on the incident angle of the shock compression wave.
Keywords: heteromodular elasticity, dynamic deformation, plane strain, shock wave, the Riemann wave, self-similar problem, numerical experiment.
@article{SJIM_2021_24_1_a1,
     author = {O. V. Dudko and A. A. Mantsybora},
     title = {Dynamics of plane strains in heteromodular isotropic elastic media},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {18--31},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a1/}
}
TY  - JOUR
AU  - O. V. Dudko
AU  - A. A. Mantsybora
TI  - Dynamics of plane strains in heteromodular isotropic elastic media
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 18
EP  - 31
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a1/
LA  - ru
ID  - SJIM_2021_24_1_a1
ER  - 
%0 Journal Article
%A O. V. Dudko
%A A. A. Mantsybora
%T Dynamics of plane strains in heteromodular isotropic elastic media
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 18-31
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a1/
%G ru
%F SJIM_2021_24_1_a1
O. V. Dudko; A. A. Mantsybora. Dynamics of plane strains in heteromodular isotropic elastic media. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 18-31. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a1/

[1] J. Sarout, Y. Gueguen, “Anisotropy of elastic wave velocities in deformed shales: Pt 1: Experimental results”, Geophysics, 73 (2008), D75-D89 | DOI

[2] Yu. P. Stefanov, “Some nonlinear rock behavior effects”, Phys. Mesomekh., 21 (2018), 234–241 | DOI

[3] Liang Zhang, Cheng Lu, Anh Kiet Tieu, “Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study”, Materials Letters, 227 (2018), 236–239 | DOI

[4] G. A. Vershina, L. E. Reut, “Specific Features of Fluoroplastic Band Bending with Due Account of Various Modularity of Material”, Sci. and Tech., 18:3 (2019), 185–194 | DOI

[5] E. V. Lomakin, B. N. Fedulov, “Nonlinear anisotropic elasticity for laminate composites”, Meccanica, 50 (2015), 1527–1535 | DOI | MR | Zbl

[6] A. N. Fedorenko, B. N. Fedulov, “Effect of elastic properties dependence of the stress state in composite materials”, Aerospace Systems, 2 (2019), 105–109 | DOI

[7] S. A. Ambartsumyan, Theory of Heteromodular Elasticity, Nauka, M., 1982 (in Russian) | MR

[8] E. V. Lomakin, Yu. N. Rabotnov, “A theory of elasticity for an isotropic body with different moduli in tension and compression”, Mech. of Solids, 13:6 (1978), 25–30

[9] V. A. Lyakhovsky, V. P. Myasnikov, “The elastic behavior of a microfractured medium”, Izv. Acad. Nauk SSSR Fiz. Zemli, 1984, no. 10, 71–75 (in Russian) | MR

[10] V. P. Myasnikov, A. I. Oleinikov, Fundamentals of Mechanics of Heterogeneous-Resisting Media, Dal'nauka, Vladivostok, 2007 (in Russian)

[11] O. V. Sadovskaya, V. M. Sadovskii, Mathematical modelling in mechanics of granular materials, Springer-Verl., Berlin–Heidelberg, 2012 | DOI | MR

[12] O. V. Dudko, A. A. Lapteva, K. T. Semyonov, “About distribution of flat one-dimensional waves and their interaction with obstacles in a medium differently reacting to a stretching and compression”, Dalnevost. Mat. Zh., 6:1–2 (2005), 94–105 (in Russian)

[13] S. N. Gavrilov, G. C. Herman, “Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading”, J. Sound and Vibration, 331 (2012), 4464–4480 | DOI

[14] V. E. Ragozina, O. V. Dudko, “Propagation of converging spherical deformation waves in a heteromodular elastic medium”, J. Appl. Mech. Tech. Phys., 57:4 (2016), 701–708 | DOI | MR | Zbl

[15] O. V. Dudko, A. A. Lapteva, V. E. Ragozina, “Nonstationary 1D Dynamics Problems for Heteromodular Elasticity with Piecewise-Linear Approximation of Boundary Conditions”, PNRPU Mech. Bull., 2019, no. 4, 37–47 | DOI | MR

[16] T. Thomas, Plastic Flow and Fracture in Solids, Academic Press, N.Y., 1961 | MR | Zbl

[17] D. R. Blend, Nonlinear Dynamic Elasticity, Blaisdell Publ. Company, Waltham, Massachusetts–London, 1969 | MR

[18] Yu. I. Dimitrienko, Nonlinear Continuum Mechanics and Large Inelastic Deformations, Springer, Heidelberg, 2011 | MR | Zbl

[19] A. D. Chernyshov, “On shock waves propagation conditions in media with elastic and plastic properties”, Problems of the Mechanics of Mountain Rock, Nauka, Alma-Ata, 1972, 183–193 (in Russian)

[20] A. G. Kulikovskii, E. I. Sveshnikova, Nonlinear Waves in Elastic Media, CRC Press, Boca Raton, 1995 | MR | Zbl

[21] V. P. Maslov, P. P. Mosolov, “General theory of the solutions of the equations of motion of an elastic medium of different moduli”, J. Appl. Math. Mech., 49:3 (1985), 322–336 | DOI | MR | Zbl

[22] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, CRC Press, Boka Raton–London–Tokyo, 1993 | MR | MR

[23] O. V. Dudko, D. A. Potyanikhin, “A self-similar problem of nonlinear dynamic elasticity theory concerning the interaction between a longitudinal shock wave and a rigidly clamped boundary”, Comput. Continuum Mech., 1:2 (2008), 27–37 | DOI

[24] A. A. Burenin, O. V. Dudko, D. A. Potyanikhin, “On the collision of two elastic solids with plane boundaries”, Comput. Continuum Mech., 6:2 (2013), 157–167 | DOI