Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_1_a1, author = {O. V. Dudko and A. A. Mantsybora}, title = {Dynamics of plane strains in heteromodular isotropic elastic media}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {18--31}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a1/} }
TY - JOUR AU - O. V. Dudko AU - A. A. Mantsybora TI - Dynamics of plane strains in heteromodular isotropic elastic media JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 18 EP - 31 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a1/ LA - ru ID - SJIM_2021_24_1_a1 ER -
O. V. Dudko; A. A. Mantsybora. Dynamics of plane strains in heteromodular isotropic elastic media. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 18-31. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a1/
[1] J. Sarout, Y. Gueguen, “Anisotropy of elastic wave velocities in deformed shales: Pt 1: Experimental results”, Geophysics, 73 (2008), D75-D89 | DOI
[2] Yu. P. Stefanov, “Some nonlinear rock behavior effects”, Phys. Mesomekh., 21 (2018), 234–241 | DOI
[3] Liang Zhang, Cheng Lu, Anh Kiet Tieu, “Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study”, Materials Letters, 227 (2018), 236–239 | DOI
[4] G. A. Vershina, L. E. Reut, “Specific Features of Fluoroplastic Band Bending with Due Account of Various Modularity of Material”, Sci. and Tech., 18:3 (2019), 185–194 | DOI
[5] E. V. Lomakin, B. N. Fedulov, “Nonlinear anisotropic elasticity for laminate composites”, Meccanica, 50 (2015), 1527–1535 | DOI | MR | Zbl
[6] A. N. Fedorenko, B. N. Fedulov, “Effect of elastic properties dependence of the stress state in composite materials”, Aerospace Systems, 2 (2019), 105–109 | DOI
[7] S. A. Ambartsumyan, Theory of Heteromodular Elasticity, Nauka, M., 1982 (in Russian) | MR
[8] E. V. Lomakin, Yu. N. Rabotnov, “A theory of elasticity for an isotropic body with different moduli in tension and compression”, Mech. of Solids, 13:6 (1978), 25–30
[9] V. A. Lyakhovsky, V. P. Myasnikov, “The elastic behavior of a microfractured medium”, Izv. Acad. Nauk SSSR Fiz. Zemli, 1984, no. 10, 71–75 (in Russian) | MR
[10] V. P. Myasnikov, A. I. Oleinikov, Fundamentals of Mechanics of Heterogeneous-Resisting Media, Dal'nauka, Vladivostok, 2007 (in Russian)
[11] O. V. Sadovskaya, V. M. Sadovskii, Mathematical modelling in mechanics of granular materials, Springer-Verl., Berlin–Heidelberg, 2012 | DOI | MR
[12] O. V. Dudko, A. A. Lapteva, K. T. Semyonov, “About distribution of flat one-dimensional waves and their interaction with obstacles in a medium differently reacting to a stretching and compression”, Dalnevost. Mat. Zh., 6:1–2 (2005), 94–105 (in Russian)
[13] S. N. Gavrilov, G. C. Herman, “Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading”, J. Sound and Vibration, 331 (2012), 4464–4480 | DOI
[14] V. E. Ragozina, O. V. Dudko, “Propagation of converging spherical deformation waves in a heteromodular elastic medium”, J. Appl. Mech. Tech. Phys., 57:4 (2016), 701–708 | DOI | MR | Zbl
[15] O. V. Dudko, A. A. Lapteva, V. E. Ragozina, “Nonstationary 1D Dynamics Problems for Heteromodular Elasticity with Piecewise-Linear Approximation of Boundary Conditions”, PNRPU Mech. Bull., 2019, no. 4, 37–47 | DOI | MR
[16] T. Thomas, Plastic Flow and Fracture in Solids, Academic Press, N.Y., 1961 | MR | Zbl
[17] D. R. Blend, Nonlinear Dynamic Elasticity, Blaisdell Publ. Company, Waltham, Massachusetts–London, 1969 | MR
[18] Yu. I. Dimitrienko, Nonlinear Continuum Mechanics and Large Inelastic Deformations, Springer, Heidelberg, 2011 | MR | Zbl
[19] A. D. Chernyshov, “On shock waves propagation conditions in media with elastic and plastic properties”, Problems of the Mechanics of Mountain Rock, Nauka, Alma-Ata, 1972, 183–193 (in Russian)
[20] A. G. Kulikovskii, E. I. Sveshnikova, Nonlinear Waves in Elastic Media, CRC Press, Boca Raton, 1995 | MR | Zbl
[21] V. P. Maslov, P. P. Mosolov, “General theory of the solutions of the equations of motion of an elastic medium of different moduli”, J. Appl. Math. Mech., 49:3 (1985), 322–336 | DOI | MR | Zbl
[22] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, CRC Press, Boka Raton–London–Tokyo, 1993 | MR | MR
[23] O. V. Dudko, D. A. Potyanikhin, “A self-similar problem of nonlinear dynamic elasticity theory concerning the interaction between a longitudinal shock wave and a rigidly clamped boundary”, Comput. Continuum Mech., 1:2 (2008), 27–37 | DOI
[24] A. A. Burenin, O. V. Dudko, D. A. Potyanikhin, “On the collision of two elastic solids with plane boundaries”, Comput. Continuum Mech., 6:2 (2013), 157–167 | DOI