Some approximate solutions of the dynamic problem of axisymmetric shock deformation
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 126-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximate theoretical solutions are presented for the boundary value problem of the shock load on the boundary of a circular cylindrical cavity in the space occupied by an incompressible elastic medium undeformed previously. We assume that the shock load causes the movement of the medium particles along helical trajectories. Data on the types and velocities of shock waves are based on the analysis of the dynamic conditions for the compatibility of discontinuities, supplemented by relations along the characteristic directions. We show that the leading front of the dynamic process in a medium undeformed previously, which is a plane-polarized shock wave, is simultaneously included in one of the families of characteristics. This property results in the constancy of shear direction on the plane-polarized shock wave. This condition makes it possible to significantly simplify the obtaining of approximate theoretical solutions for the near-front neighborhood of the shock wave. The two approximate solutions of the problem are presented. One of them bases on solving a system of evolutionary equations that was obtained using the matched asymptotic expansions method; and the second solution, on a version of the ray method.
Keywords: nonlinear elastic medium, incompressibility, shock deformation, helical motion, characteristics of a hyperbolic system, evolutionary equation, ray series.
Mots-clés : Riemann invariants, perturbation method
@article{SJIM_2020_23_4_a9,
     author = {V. E. Ragozina and Yu. E. Ivanova},
     title = {Some approximate solutions of the dynamic problem of axisymmetric shock deformation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {126--143},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a9/}
}
TY  - JOUR
AU  - V. E. Ragozina
AU  - Yu. E. Ivanova
TI  - Some approximate solutions of the dynamic problem of axisymmetric shock deformation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 126
EP  - 143
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a9/
LA  - ru
ID  - SJIM_2020_23_4_a9
ER  - 
%0 Journal Article
%A V. E. Ragozina
%A Yu. E. Ivanova
%T Some approximate solutions of the dynamic problem of axisymmetric shock deformation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 126-143
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a9/
%G ru
%F SJIM_2020_23_4_a9
V. E. Ragozina; Yu. E. Ivanova. Some approximate solutions of the dynamic problem of axisymmetric shock deformation. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 126-143. http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a9/

[1] R. Kinslow, High-Velocity Impact Phenomena, Academic Press, N.Y., 1970

[2] J. S. Rainkhart, J. Pirson, Behavior of Metals under Impulsive Loads, American Society for Metals, Clevelend, Ohio, 1954

[3] Forging and punching: Reference book, Mashinostroenie, M., 2010 (in Russian)

[4] A. Kobayasi, Handbook on Experimental Mechanics, Prentice-Hall, Englewood Cliffs, 1987

[5] G. Uizem, Linear and Nonlinear Waves, Wiley Sons, N. Y., 1974 | MR

[6] D. R. Blend, Nonlinear Dynamical Elasticity, Blaisdell, Waltham, 1969 | MR

[7] A. G. Kulikovskii, E. I. Sveshnikova, Nonlinear waves in elastic media, Moskovskii Litsei, M., 1998 (in Russian)

[8] B. L. Rozhdestvenskii, N. N. Yanenko, Systems of quasilinear equations and applications to gas dynamics, Nauka, M., 1968 (in Russian)

[9] O. V. Rudenko, S. I. Soluyan, Theoretical basis of nonlinear acoustics, Nauka, M., 1975 (in Russian)

[10] A. I. Lurie, Nonlinear Elasticity Theory, Elsevier, Amsterdam, 1990 | MR

[11] A. A. Burenin, V. E. Ragozina, “To mechanism of deformation propagation of change in form”, Modeling and Mechanics, Publ. Sib. Gos. Aerokosmich. Univ., Krasnoyarsk, 2012, 31–36 (in Russian)

[12] T. Tomas, Plastic Flow and Fracture in Solids, Academic Press, N. Y.–London, 1961 | MR

[13] A. Kh. Nayfeh, Perturbation Methods, Wiley Sons, N.Y., 1973 | MR | Zbl

[14] L. A. Babicheva, G. I. Bykovtsev, N. D. Verveiko, “Ray method for solving dynamic problems in elastoviscoplastic media”, Prikl. Mat. Mekh., 37:1 (1973), 145–155 | Zbl

[15] Yu. A. Rossikhin, M. V. Shitikova, “Ray method for solving dynamic problems connected with the propagation of wave surfaces of strong and weak discontinuities”, Appl. Mech. Reviews, 48:1 (1995), 1–39 | DOI | MR

[16] A. A. Burenin, V. E. Ragozina, Yu. E. Ivanova, “An evolutionary equation for wave processes of forming”, Izv. Saratov. Gos. Univ. Ser. Mat. Mekh. Inform., 9:4-2 (2009), 14–24 (in Russian)

[17] E. N. Pelinovskii, V. E. Fridman, Yu. K. Engel'brekht, Nonlinear evolutionary equations, Valgus, Tallin, 1984 (in Russian) | MR

[18] Yu. I. Dimitrienko, Nonlinear continuum mechanics, Fizmatlit, M., 2009 (in Russian)

[19] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical problems of numerical solving the hyperbolic systems of equations, Fizmatlit, M., 2001 (in Russian)

[20] V. I. Levitas, Elastoplastic deformations of materials under high pressure, Naukova Dumka, Kiev, 1987 (in Russian)

[21] A. V. Porubov, Localization of nonlinear waves of deformation: asymptotic and numerical methods of studying, Fizmatlit, M., 2009 (in Russian)

[22] H. M. Ryskin, D. I. Trubetskov, Nonlinear waves, Nauka. Fizmatlit, M., 2000 (in Russian)

[23] V. E. Ragozina, Yu. E. Ivanova, “On evolutionary equations of impact deformation problems with the plane surfaces of discontinuities”, Vychisl. Mekh. Sploshn. Sred., 2:3 (2009), 82–95 (in Russian)

[24] J. D. Achenbach, D. P. Reddy, “Note of wave propagation in lineary viscoelastic media”, ZAMP, 18:1 (1967), 141–144 | MR | Zbl

[25] A. A. Burenin, Yu. A. Rossikhin, “Ray method for solving the one-dimensional problems of nonlinear dynamical elasticity theory with the plane surfaces of strong discontinuities”, Applied Problems of Mechanics of Deformable Media, Publ. DVO RAN, Vladivostok, 1991, 129–137 (in Russian)

[26] A. A. Burenin, V. E. Ragozina, “To construction of approximate solutions of the boundary value problems of impact deformation”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2008, no. 2, 101–106 (in Russian)

[27] E. A. Gerasimenko, V. E. Ragozina, “Ray expansions for studying the regularities of plane waves propagation”, Vestnik Samar. Gos. Univ. Estestvennonauchn. Ser., 46:6/1 (2006), 94–113 (in Russian) | Zbl

[28] V. E. Ragozina, Yu. E. Ivanova, “Application of a modified ray method for solving a multidimensional problem of impact deformation of an elastic halfspace with a curved boundary”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2016, no. 4, 132–143 (in Russian) | MR

[29] S. N. Korobeinikov, Nonlinear deforming of solids, Publ. SB RAN, Novosibirsk, 2000 (in Russian)

[30] V. A. Levin, A. V. Vershinin, Nonlinear computational strength mechanics, v. 2, Numerical Methods. Parallel Computing, Fizmatlit, M., 2015 (in Russian)

[31] V. F. Kuropatenko, “Methods of shock wave calculation”, Computational Science and High Performance Computing, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), 88, Springer-Verl., Berlin–Heidelberg, 2005, 77–93 | DOI | Zbl