Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_4_a9, author = {V. E. Ragozina and Yu. E. Ivanova}, title = {Some approximate solutions of the dynamic problem of axisymmetric shock deformation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {126--143}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a9/} }
TY - JOUR AU - V. E. Ragozina AU - Yu. E. Ivanova TI - Some approximate solutions of the dynamic problem of axisymmetric shock deformation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 126 EP - 143 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a9/ LA - ru ID - SJIM_2020_23_4_a9 ER -
%0 Journal Article %A V. E. Ragozina %A Yu. E. Ivanova %T Some approximate solutions of the dynamic problem of axisymmetric shock deformation %J Sibirskij žurnal industrialʹnoj matematiki %D 2020 %P 126-143 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a9/ %G ru %F SJIM_2020_23_4_a9
V. E. Ragozina; Yu. E. Ivanova. Some approximate solutions of the dynamic problem of axisymmetric shock deformation. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 126-143. http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a9/
[1] R. Kinslow, High-Velocity Impact Phenomena, Academic Press, N.Y., 1970
[2] J. S. Rainkhart, J. Pirson, Behavior of Metals under Impulsive Loads, American Society for Metals, Clevelend, Ohio, 1954
[3] Forging and punching: Reference book, Mashinostroenie, M., 2010 (in Russian)
[4] A. Kobayasi, Handbook on Experimental Mechanics, Prentice-Hall, Englewood Cliffs, 1987
[5] G. Uizem, Linear and Nonlinear Waves, Wiley Sons, N. Y., 1974 | MR
[6] D. R. Blend, Nonlinear Dynamical Elasticity, Blaisdell, Waltham, 1969 | MR
[7] A. G. Kulikovskii, E. I. Sveshnikova, Nonlinear waves in elastic media, Moskovskii Litsei, M., 1998 (in Russian)
[8] B. L. Rozhdestvenskii, N. N. Yanenko, Systems of quasilinear equations and applications to gas dynamics, Nauka, M., 1968 (in Russian)
[9] O. V. Rudenko, S. I. Soluyan, Theoretical basis of nonlinear acoustics, Nauka, M., 1975 (in Russian)
[10] A. I. Lurie, Nonlinear Elasticity Theory, Elsevier, Amsterdam, 1990 | MR
[11] A. A. Burenin, V. E. Ragozina, “To mechanism of deformation propagation of change in form”, Modeling and Mechanics, Publ. Sib. Gos. Aerokosmich. Univ., Krasnoyarsk, 2012, 31–36 (in Russian)
[12] T. Tomas, Plastic Flow and Fracture in Solids, Academic Press, N. Y.–London, 1961 | MR
[13] A. Kh. Nayfeh, Perturbation Methods, Wiley Sons, N.Y., 1973 | MR | Zbl
[14] L. A. Babicheva, G. I. Bykovtsev, N. D. Verveiko, “Ray method for solving dynamic problems in elastoviscoplastic media”, Prikl. Mat. Mekh., 37:1 (1973), 145–155 | Zbl
[15] Yu. A. Rossikhin, M. V. Shitikova, “Ray method for solving dynamic problems connected with the propagation of wave surfaces of strong and weak discontinuities”, Appl. Mech. Reviews, 48:1 (1995), 1–39 | DOI | MR
[16] A. A. Burenin, V. E. Ragozina, Yu. E. Ivanova, “An evolutionary equation for wave processes of forming”, Izv. Saratov. Gos. Univ. Ser. Mat. Mekh. Inform., 9:4-2 (2009), 14–24 (in Russian)
[17] E. N. Pelinovskii, V. E. Fridman, Yu. K. Engel'brekht, Nonlinear evolutionary equations, Valgus, Tallin, 1984 (in Russian) | MR
[18] Yu. I. Dimitrienko, Nonlinear continuum mechanics, Fizmatlit, M., 2009 (in Russian)
[19] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical problems of numerical solving the hyperbolic systems of equations, Fizmatlit, M., 2001 (in Russian)
[20] V. I. Levitas, Elastoplastic deformations of materials under high pressure, Naukova Dumka, Kiev, 1987 (in Russian)
[21] A. V. Porubov, Localization of nonlinear waves of deformation: asymptotic and numerical methods of studying, Fizmatlit, M., 2009 (in Russian)
[22] H. M. Ryskin, D. I. Trubetskov, Nonlinear waves, Nauka. Fizmatlit, M., 2000 (in Russian)
[23] V. E. Ragozina, Yu. E. Ivanova, “On evolutionary equations of impact deformation problems with the plane surfaces of discontinuities”, Vychisl. Mekh. Sploshn. Sred., 2:3 (2009), 82–95 (in Russian)
[24] J. D. Achenbach, D. P. Reddy, “Note of wave propagation in lineary viscoelastic media”, ZAMP, 18:1 (1967), 141–144 | MR | Zbl
[25] A. A. Burenin, Yu. A. Rossikhin, “Ray method for solving the one-dimensional problems of nonlinear dynamical elasticity theory with the plane surfaces of strong discontinuities”, Applied Problems of Mechanics of Deformable Media, Publ. DVO RAN, Vladivostok, 1991, 129–137 (in Russian)
[26] A. A. Burenin, V. E. Ragozina, “To construction of approximate solutions of the boundary value problems of impact deformation”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2008, no. 2, 101–106 (in Russian)
[27] E. A. Gerasimenko, V. E. Ragozina, “Ray expansions for studying the regularities of plane waves propagation”, Vestnik Samar. Gos. Univ. Estestvennonauchn. Ser., 46:6/1 (2006), 94–113 (in Russian) | Zbl
[28] V. E. Ragozina, Yu. E. Ivanova, “Application of a modified ray method for solving a multidimensional problem of impact deformation of an elastic halfspace with a curved boundary”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2016, no. 4, 132–143 (in Russian) | MR
[29] S. N. Korobeinikov, Nonlinear deforming of solids, Publ. SB RAN, Novosibirsk, 2000 (in Russian)
[30] V. A. Levin, A. V. Vershinin, Nonlinear computational strength mechanics, v. 2, Numerical Methods. Parallel Computing, Fizmatlit, M., 2015 (in Russian)
[31] V. F. Kuropatenko, “Methods of shock wave calculation”, Computational Science and High Performance Computing, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), 88, Springer-Verl., Berlin–Heidelberg, 2005, 77–93 | DOI | Zbl