A parametrization of the general Lorentz group
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 114-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the two new variants of an explicit parametrization for the general Lorentz group. Formulas are given for the direct and inverse four-dimensional Lorentz transformations. These formulas use the orthogonal three- or four-dimensional matrices. We find the infinitesimal operators of the proper Lorentz group and the multiplication formulas (commutators) of the infinitesimal operators. The orthogonal three- and four-dimensional matrices are parameterized by lower triangular matrices containing three or six independent parameters.
Mots-clés : Lorentz transformation, orthogonal matrix
Keywords: relativity theory, wave equation, Lorentz group, infinitesimal operator. .
@article{SJIM_2020_23_4_a8,
     author = {N. I. Ostrosablin},
     title = {A parametrization of the general {Lorentz} group},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {114--125},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a8/}
}
TY  - JOUR
AU  - N. I. Ostrosablin
TI  - A parametrization of the general Lorentz group
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 114
EP  - 125
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a8/
LA  - ru
ID  - SJIM_2020_23_4_a8
ER  - 
%0 Journal Article
%A N. I. Ostrosablin
%T A parametrization of the general Lorentz group
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 114-125
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a8/
%G ru
%F SJIM_2020_23_4_a8
N. I. Ostrosablin. A parametrization of the general Lorentz group. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 114-125. http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a8/

[1] L. D. Landau, E. M. Lifshits, Field Theory, Addison-Wesley, Cambridge, 1951 | MR

[2] V. Pauli, Theory of Relativity, Pergamon Press, London, 1958 | MR | Zbl

[3] D. Bom, The Special Theory of Relativity, W. A. Benjamin, N.Y., 1965

[4] I. M. Gel'fand, R. A. Minlos, Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications, Pergamon Press, Oxford, 1963 | Zbl

[5] M. A. Naimark, Linear representations of the Lorentz group, Fizmatlit, M., 1958 (in Russian)

[6] F. I. Fedorov, The Lorentz group, Nauka, M., 1979 (in Russian) | MR

[7] N. I. Ostrosablin, “Functions of kinetic stresses in mechanics of continua”, Dinamika Sploshnoi Sredy, 125, 2007, 76–116 (in Russian) | MR | Zbl

[8] I. I. Vorovich, Lectures on Newton's dynamics. Modern view of Newton's mechanics and its development, Publ. Inst. Kompyutern. Issled., M.–Izhevsk, 2004 (in Russian)

[9] N. I. Ostrosablin, “On invariants of the tensor of rank four of elasticity moduli”, Sibir. Zh. Ind. Mat., 1:1 (1998), 155–163 (in Russian) | MR | Zbl

[10] P. I. Olver, Applications of Lie Groups to Differential Equations, Springer, N.Y., 1986 | MR | Zbl

[11] N. I. Ostrosablin, “On the structure of the tensor of the elasticity moduli. The elastic eigenstates”, Sbornik nauchnykh trudov, Dinamika sploshnoi sredy, 66, Lavrent-ev Inst. Gidrodin. SO RAN, 1984, 113–125 (in Russian) | MR | Zbl

[12] N. I. Ostrosablin, “On classification of anisotropic materials”, Sbornik nauchnykh trudov, Dinamika sploshnoi sredy, 71, Lavrent-ev Inst. Gidrodin. SO RAN, 1985, 82–96 (in Russian) | Zbl