On integration of a matrix Riccati equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 101-113

Voir la notice de l'article provenant de la source Math-Net.Ru

We expose the complete integration of the simplest matrix Riccati equation in the two- and three-dimensional cases for an arbitrary linear differential operator. The solution is constructed in terms of the Jordan form of an unknown matrix and the corresponding similarity matrix. We show that a similarity matrix is always representable as the product of two matrices one of which is an invariant of the differential operator.
Mots-clés : matrix Riccati equation, algebraic invariant, Jordan form. .
@article{SJIM_2020_23_4_a7,
     author = {M. V. Neshchadim and A. P. Chupakhin},
     title = {On integration of a matrix {Riccati} equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {101--113},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a7/}
}
TY  - JOUR
AU  - M. V. Neshchadim
AU  - A. P. Chupakhin
TI  - On integration of a matrix Riccati equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 101
EP  - 113
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a7/
LA  - ru
ID  - SJIM_2020_23_4_a7
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%A A. P. Chupakhin
%T On integration of a matrix Riccati equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 101-113
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a7/
%G ru
%F SJIM_2020_23_4_a7
M. V. Neshchadim; A. P. Chupakhin. On integration of a matrix Riccati equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 101-113. http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a7/