Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_4_a5, author = {I. M. Kulikov and E. I. Vorobyov and I. G. Chernykh and V. G. Elbakyan}, title = {Application of geodesic grids for modeling the hydrodynamic processes in spherical objects}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {77--87}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a5/} }
TY - JOUR AU - I. M. Kulikov AU - E. I. Vorobyov AU - I. G. Chernykh AU - V. G. Elbakyan TI - Application of geodesic grids for modeling the hydrodynamic processes in spherical objects JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 77 EP - 87 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a5/ LA - ru ID - SJIM_2020_23_4_a5 ER -
%0 Journal Article %A I. M. Kulikov %A E. I. Vorobyov %A I. G. Chernykh %A V. G. Elbakyan %T Application of geodesic grids for modeling the hydrodynamic processes in spherical objects %J Sibirskij žurnal industrialʹnoj matematiki %D 2020 %P 77-87 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a5/ %G ru %F SJIM_2020_23_4_a5
I. M. Kulikov; E. I. Vorobyov; I. G. Chernykh; V. G. Elbakyan. Application of geodesic grids for modeling the hydrodynamic processes in spherical objects. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 77-87. http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a5/
[1] K. Kadam, E. Vorobyov, Z. Regaly, A. Kospal, P. Abraham, “Dynamical gaseous rings in global simulations of protoplanetary disk formation”, Astrophys. J., 882:2 (2019), 96 | DOI
[2] E. Akiyama, E. Vorobyov, H. Baobabu Liu et al, “A tail structure associated with a protoplanetary disk around SU Aurigae”, Astronom. J., 157:4 (2019), 165 | DOI
[3] D. M. Meyer, E. I. Vorobyov, V. G. Elbakyan, “Burst occurrence in young massive stellar objects”, Monthly Not. Royal Astronom. Soc., 482:4 (2019), 5459–5476 | DOI
[4] Z. Regaly, E. Vorobyov, “The circumstellar disk response to the motion of the host star”, Astronomy and Astrophys., 601 (2017), A24 | DOI
[5] I. Baraffe, V. G. Elbakyan, E. I. Vorobyov, G. Chabrier, “Self-consistent evolution of accreting low-mass stars and brown dwarfs”, Astronomy and Astrophys., 597 (2017), A19 | DOI
[6] V. Vshivkov, G. Lazareva, A. Snytnikov, I. Kulikov, A. Tutukov, “Hydrodynamical code for numerical simulation of the gas components of colliding galaxies”, Astrophys. J. Suppl. Ser., 194:2 (2011), 47 | DOI
[7] I. Kulikov, G. Lazareva, A. Snytnikov, V. Vshivkov, “Supercomputer simulation of an astrophysical object collapse by the fluids-in-cell method”, Lecture Notes in Comput. Sci., 5698, 2009, 414–422 | DOI
[8] I. Kulikov, “The numerical modeling of the collapse of molecular cloud on adaptive nested mesh”, J. Phys. Conf. Ser., 1103 (2018), 012011 | DOI
[9] N. Ardeljan, G. Bisnovatyi-Kogan, S. Moiseenko, “An implicit Lagrangian code for the treatment of nonstationary problems in rotating astrophysical bodies”, Astronomy and Astrophys, 115 (1996), 573–594
[10] V. Springel, “E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh”, Monthly Not. Royal Astron. Soc., 401 (2010), 791–851 | DOI
[11] S. Lloyd, “Least squares quantization in PCM”, IEEE Trans. Inform. Theory, 28:2 (1982), 129–137 | DOI | MR | Zbl
[12] P. Mocz, M. Vogelsberger, D. Sijacki, R.. Pakmor, L. Hernquist, “A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations”, Monthly Not. Royal Astronom. Soc., 437:1 (2014), 397–414 | DOI
[13] K. Schaal et al, “Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement”, Monthly Not. Royal Astronom. Soc., 453:4 (2015), 4278–4300
[14] J. Murphy, A. Burrows, “BETHE-Hydro: An arbitrary lagrangian-eulerian multidimensional hydrodynamics code for astrophysical simulations”, Astrophys. J. Suppl. Ser., 179 (2008), 209–241 | DOI
[15] P. Hopkins, “A new class of accurate, mesh-free hydrodynamic simulation methods”, Monthly Not. Royal Astron. Soc., 450:1 (2015), 53–110 | DOI
[16] B. Glinsky, I. Kulikov, I. Chernykh et al., “The co-design of astrophysical code for massively parallel supercomputers”, Lecture Notes in Comput. Sci., 10049, 2016, 342–353 | DOI
[17] I. Kulikov, I. Chernykh, B. Glinskiy, D. Weins, A. Shmelev, “Astrophysics simulation on RSC massively parallel architecture”, Proc. 2015 IEEE/ACM 15 International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, Institute Electric. Electron. Engrg. Inc., 2015, 1131–1134 | DOI
[18] D. Balsara, V. Florinski, S. Garain, S. Subramanian, K. Gurski, “Efficient, divergence-free, high-order MHD on 3D spherical meshes with optimal geodesic meshing”, Monthly Not. Royal Astronom. Soc., 487:1 (2019), 1283–1314 | DOI
[19] I. Kulikov, “GPUPEGAS: A new GPU-accelerated hydrodynamic code for numerical simulations of interacting galaxies”, Astrophys. J. Suppl. Ser., 214 (2014), 12 | DOI
[20] I. M. Kulikov, I. G. Chernykh, A. V. Snytnikov, B. M. Glinskiy, A. V. Tutukov, “AstroPhi: A code for complex simulation of dynamics of astrophysical objects using hybrid supercomputers”, Comput. Phys. Comm., 186, 71–80 | DOI
[21] I. M. Kulikov, I. G. Chernykh, B. M. Glinskiy, V. A. Protasov, “An efficient optimization of Hll method for the second generation of Intel Xeon Phi Processor”, Lobachevskii J. Math., 39:4 (2018), 543–551 | DOI | MR | Zbl
[22] I. M. Kulikov, I. G. Chernykh, A. V. Tutukov, “A new parallel Intel Xeon Phi hydrodynamics code for massively parallel supercomputers”, Lobachevskii J. Math., 39:9 (2018), 1207–1216 | DOI | MR | Zbl
[23] D. Balsara, D. Spicer, “Maintaining pressure positivity in magnetohydrodynamic simulations”, J. Comput. Phys., 148 (1999), 133–148 | DOI | MR | Zbl
[24] V. Springel, L. Hernquist, “Cosmological smoothed particle hydrodynamics simulations: the entropy equation”, Monthly Not. Royal Astronom. Soc., 333 (2002), 649–664 | DOI
[25] S. Godunov, I. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee”, Comput. Math. Math. Phys., 54 (2014), 1012–1024 | DOI | MR | Zbl
[26] I. Kulikov, I. Chernykh, A. Tutukov, “A new hydrodynamic code with explicit vectorization instructions optimizations, dedicated to the numerical simulation of astrophysical gas flow. I. Numerical method, tests and model problems”, Astrophys. J. Suppl. Ser., 243 (2019), 4 | DOI
[27] I. Kulikov, E. Vorobyov, “Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows”, J. Comput. Phys., 317 (2016), 318–346 | DOI | MR | Zbl