Application of geodesic grids for modeling the hydrodynamic processes in spherical objects
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 77-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new numerical method that bases on the mathematical apparatus of geodesic grids. This approach allows us to simulate spherical objects without any singularities that occur in using the spherical or cylindrical coordinates. Solution of the hyperbolic equations is described in detail. The method is expanded to solve the equations of hydrodynamics and tested on the Sedov point explosion problem. The numerical method and the approach to grid construction make it possible to compute a rotation invariant solution in Cartesian coordinates. This in turn allows us to use this approach effectively for simulating various spherical astrophysical objects.
Keywords: numerical simulation, computational astrophysics, geodesic grid. .
@article{SJIM_2020_23_4_a5,
     author = {I. M. Kulikov and E. I. Vorobyov and I. G. Chernykh and V. G. Elbakyan},
     title = {Application of geodesic grids for modeling the hydrodynamic processes in spherical objects},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {77--87},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a5/}
}
TY  - JOUR
AU  - I. M. Kulikov
AU  - E. I. Vorobyov
AU  - I. G. Chernykh
AU  - V. G. Elbakyan
TI  - Application of geodesic grids for modeling the hydrodynamic processes in spherical objects
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 77
EP  - 87
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a5/
LA  - ru
ID  - SJIM_2020_23_4_a5
ER  - 
%0 Journal Article
%A I. M. Kulikov
%A E. I. Vorobyov
%A I. G. Chernykh
%A V. G. Elbakyan
%T Application of geodesic grids for modeling the hydrodynamic processes in spherical objects
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 77-87
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a5/
%G ru
%F SJIM_2020_23_4_a5
I. M. Kulikov; E. I. Vorobyov; I. G. Chernykh; V. G. Elbakyan. Application of geodesic grids for modeling the hydrodynamic processes in spherical objects. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 77-87. http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a5/

[1] K. Kadam, E. Vorobyov, Z. Regaly, A. Kospal, P. Abraham, “Dynamical gaseous rings in global simulations of protoplanetary disk formation”, Astrophys. J., 882:2 (2019), 96 | DOI

[2] E. Akiyama, E. Vorobyov, H. Baobabu Liu et al, “A tail structure associated with a protoplanetary disk around SU Aurigae”, Astronom. J., 157:4 (2019), 165 | DOI

[3] D. M. Meyer, E. I. Vorobyov, V. G. Elbakyan, “Burst occurrence in young massive stellar objects”, Monthly Not. Royal Astronom. Soc., 482:4 (2019), 5459–5476 | DOI

[4] Z. Regaly, E. Vorobyov, “The circumstellar disk response to the motion of the host star”, Astronomy and Astrophys., 601 (2017), A24 | DOI

[5] I. Baraffe, V. G. Elbakyan, E. I. Vorobyov, G. Chabrier, “Self-consistent evolution of accreting low-mass stars and brown dwarfs”, Astronomy and Astrophys., 597 (2017), A19 | DOI

[6] V. Vshivkov, G. Lazareva, A. Snytnikov, I. Kulikov, A. Tutukov, “Hydrodynamical code for numerical simulation of the gas components of colliding galaxies”, Astrophys. J. Suppl. Ser., 194:2 (2011), 47 | DOI

[7] I. Kulikov, G. Lazareva, A. Snytnikov, V. Vshivkov, “Supercomputer simulation of an astrophysical object collapse by the fluids-in-cell method”, Lecture Notes in Comput. Sci., 5698, 2009, 414–422 | DOI

[8] I. Kulikov, “The numerical modeling of the collapse of molecular cloud on adaptive nested mesh”, J. Phys. Conf. Ser., 1103 (2018), 012011 | DOI

[9] N. Ardeljan, G. Bisnovatyi-Kogan, S. Moiseenko, “An implicit Lagrangian code for the treatment of nonstationary problems in rotating astrophysical bodies”, Astronomy and Astrophys, 115 (1996), 573–594

[10] V. Springel, “E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh”, Monthly Not. Royal Astron. Soc., 401 (2010), 791–851 | DOI

[11] S. Lloyd, “Least squares quantization in PCM”, IEEE Trans. Inform. Theory, 28:2 (1982), 129–137 | DOI | MR | Zbl

[12] P. Mocz, M. Vogelsberger, D. Sijacki, R.. Pakmor, L. Hernquist, “A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations”, Monthly Not. Royal Astronom. Soc., 437:1 (2014), 397–414 | DOI

[13] K. Schaal et al, “Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement”, Monthly Not. Royal Astronom. Soc., 453:4 (2015), 4278–4300

[14] J. Murphy, A. Burrows, “BETHE-Hydro: An arbitrary lagrangian-eulerian multidimensional hydrodynamics code for astrophysical simulations”, Astrophys. J. Suppl. Ser., 179 (2008), 209–241 | DOI

[15] P. Hopkins, “A new class of accurate, mesh-free hydrodynamic simulation methods”, Monthly Not. Royal Astron. Soc., 450:1 (2015), 53–110 | DOI

[16] B. Glinsky, I. Kulikov, I. Chernykh et al., “The co-design of astrophysical code for massively parallel supercomputers”, Lecture Notes in Comput. Sci., 10049, 2016, 342–353 | DOI

[17] I. Kulikov, I. Chernykh, B. Glinskiy, D. Weins, A. Shmelev, “Astrophysics simulation on RSC massively parallel architecture”, Proc. 2015 IEEE/ACM 15 International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, Institute Electric. Electron. Engrg. Inc., 2015, 1131–1134 | DOI

[18] D. Balsara, V. Florinski, S. Garain, S. Subramanian, K. Gurski, “Efficient, divergence-free, high-order MHD on 3D spherical meshes with optimal geodesic meshing”, Monthly Not. Royal Astronom. Soc., 487:1 (2019), 1283–1314 | DOI

[19] I. Kulikov, “GPUPEGAS: A new GPU-accelerated hydrodynamic code for numerical simulations of interacting galaxies”, Astrophys. J. Suppl. Ser., 214 (2014), 12 | DOI

[20] I. M. Kulikov, I. G. Chernykh, A. V. Snytnikov, B. M. Glinskiy, A. V. Tutukov, “AstroPhi: A code for complex simulation of dynamics of astrophysical objects using hybrid supercomputers”, Comput. Phys. Comm., 186, 71–80 | DOI

[21] I. M. Kulikov, I. G. Chernykh, B. M. Glinskiy, V. A. Protasov, “An efficient optimization of Hll method for the second generation of Intel Xeon Phi Processor”, Lobachevskii J. Math., 39:4 (2018), 543–551 | DOI | MR | Zbl

[22] I. M. Kulikov, I. G. Chernykh, A. V. Tutukov, “A new parallel Intel Xeon Phi hydrodynamics code for massively parallel supercomputers”, Lobachevskii J. Math., 39:9 (2018), 1207–1216 | DOI | MR | Zbl

[23] D. Balsara, D. Spicer, “Maintaining pressure positivity in magnetohydrodynamic simulations”, J. Comput. Phys., 148 (1999), 133–148 | DOI | MR | Zbl

[24] V. Springel, L. Hernquist, “Cosmological smoothed particle hydrodynamics simulations: the entropy equation”, Monthly Not. Royal Astronom. Soc., 333 (2002), 649–664 | DOI

[25] S. Godunov, I. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee”, Comput. Math. Math. Phys., 54 (2014), 1012–1024 | DOI | MR | Zbl

[26] I. Kulikov, I. Chernykh, A. Tutukov, “A new hydrodynamic code with explicit vectorization instructions optimizations, dedicated to the numerical simulation of astrophysical gas flow. I. Numerical method, tests and model problems”, Astrophys. J. Suppl. Ser., 243 (2019), 4 | DOI

[27] I. Kulikov, E. Vorobyov, “Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows”, J. Comput. Phys., 317 (2016), 318–346 | DOI | MR | Zbl