On invariant surfaces in gene network models
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 69-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an invariant two-dimensional surface in the phase portrait of a certain six-dimensional dynamical system which is considered as a model for the circular gene network functioning. This invariant surface contains an equilibrium point $S_0$ of the system, and if $S_0$ is hyperbolic then this surface contains a cycle of the system. The conditions for the existence of a cycle of this and similar systems were obtained earlier.
Keywords: circular gene network model, cycle, hyperbolic equilibrium point
Mots-clés : phase portrait, invariant surface. .
@article{SJIM_2020_23_4_a4,
     author = {N. E. Kirillova},
     title = {On invariant surfaces in gene network models},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {69--76},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a4/}
}
TY  - JOUR
AU  - N. E. Kirillova
TI  - On invariant surfaces in gene network models
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 69
EP  - 76
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a4/
LA  - ru
ID  - SJIM_2020_23_4_a4
ER  - 
%0 Journal Article
%A N. E. Kirillova
%T On invariant surfaces in gene network models
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 69-76
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a4/
%G ru
%F SJIM_2020_23_4_a4
N. E. Kirillova. On invariant surfaces in gene network models. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 69-76. http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a4/

[1] V. P. Golubyatnikov, N. E. Kirillova, “On cycles in models of functioning of circular gene networks”, J. Math. Sci., 246:6 (2020), 779–787 | DOI | DOI | MR | Zbl

[2] N. E. Kirillova, L. S. Minushkina, “About digitization of phase portraits of dynamical systems”, Izv. Altai. Gos. Univ., 108:4 (2019), 82–85 (in Russian) | DOI

[3] T. A. Bukharina, V. P. Golubyatnikov, N. E. Kirillova, al. et., “Mathematical and numerical models of two asymmetric gene networks”, SEMR, 15 (2018), 1271–1283 | DOI | MR | Zbl

[4] P. Hartman, Ordinary Differential Equations, Wiley, N.Y., 1964 | MR | Zbl

[5] K. Mischaikow, “Topological Techniques for Efficient Rigorous Computations in Dynamics”, Acta Numerica, 11 (2002), 435–477 | DOI | MR | Zbl

[6] R. Abraham, J. Robbin, Transversal Mappings and Flows, W. A. Benjamin, N.Y., 1967 | MR | Zbl

[7] N. B. Ayupova, V. P. Golubyatnikov, M. V. Kazantsev, “On the existence of a cycle in an asymmetric model of a molecular repressilator”, Numer. Analys. Appl., 10 (2017), 101–107 | DOI | DOI | MR | Zbl

[8] M. B. Elowitz, S. Leibler, “A synthetic oscillatory network of transcriptional regulators”, Nature, 403 (2000), 335–338 | DOI

[9] S. D. Glyzin, A. Y. Kolesov, N. K. Rozov, “Quasi-stable structures in circular gene networks”, Comput. Math. and Math. Phys., 58 (2018), 659–679 | DOI | DOI | MR | Zbl

[10] S. Hastings, J. Tyson, D. Webster, “Existence of periodic solutions for negative feedback cellular control systems”, J. Differ. Equ., 25 (1977), 39–64 | DOI | MR | Zbl

[11] A. A. Akin'shin, V. P. Golubyatnikov, “Geometrical characteristics of cycles in some symmetrical dynamical systems”, Sibir. Zh. Chist. Prikl. Math., 12:12 (2012), 3–12 (in Russian) | Zbl