Mathematical model of the aseptic inflammation dynamics
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 30-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a new mathematical model of the aseptic inflammation dynamics. The adequacy of the model is confirmed by a qualitative and quantitative agreement with the laboratory data on the dynamics of the inflammatory process factors in the central zone of wound damage. We show that the model adequately describes not only the classical version of this process but also the available scenarios of acute and chronic inflammatory processes in aseptic cutaneous wound accompanied by the most common dysfunctions of blood cells or its cellular composition.
Mots-clés : aseptic inflammation
Keywords: excision wound, mathematical model, sensitivity, leukocyte, cytokine, efferocytosis, thrombocythemia, thrombocytopenia, leukopenia, aplastic anemia. .
@article{SJIM_2020_23_4_a2,
     author = {O. F. Voropaeva and T. V. Bayadilov},
     title = {Mathematical model of the aseptic inflammation dynamics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {30--47},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a2/}
}
TY  - JOUR
AU  - O. F. Voropaeva
AU  - T. V. Bayadilov
TI  - Mathematical model of the aseptic inflammation dynamics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 30
EP  - 47
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a2/
LA  - ru
ID  - SJIM_2020_23_4_a2
ER  - 
%0 Journal Article
%A O. F. Voropaeva
%A T. V. Bayadilov
%T Mathematical model of the aseptic inflammation dynamics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 30-47
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a2/
%G ru
%F SJIM_2020_23_4_a2
O. F. Voropaeva; T. V. Bayadilov. Mathematical model of the aseptic inflammation dynamics. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 30-47. http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a2/

[1] Inflammation. A textbook for physicians, Meditsina, M., 1995 (in Russian)

[2] Wound and wound infection. A textbook for physicians, Meditsina, M., 1990 (in Russian)

[3] A. A. Yarilin, Fundamentals of Immunology, Meditsina, M., 1999 (in Russian)

[4] A. Yu. Arkhipova, Silk fibroin bioresorbable scaffolds for tissue engineering and regenerative medicine, Candidate's dissertation in biology, Press Moskov. Gos. Univ., M., 2016 (in Russian)

[5] V. P. Karagodin, Yu. V. Bobryshev, A. N. Orekhov, “Inflammation, immunocompetent cells, cytokines, and their roles in atherogenesis”, Pathogenesis, 12:1 (2014), 21–35 (in Russian)

[6] J. D. Day, C. Cockrell, R. Namas, R. Zamora, G. An, Y. Vodovotz, “Inflammation and disease: Modelling and modulation of the inflammatory response to alleviate critical illness”, Curr. Opin. Sys. Biol., 12 (2018), 22–29 | DOI

[7] Y. Vodovotz, G. Clermont, C. Chow, G. An, “Mathematical models of the acute inflammatory response”, Curr. Opin. Crit. Care, 10 (2004), 383–390 | DOI

[8] Y. Vodovotz, “Computational modelling of the inflammatory response in trauma, sepsis and wound healing: implications for modelling resilience”, Interface Focus, 4 (2014), 20140004 | DOI

[9] R. Eftimie, J. J. Gillard, D. A. Cantrell, “Mathematical models for immunology: Current state of the art and future research directions”, Bull. Math. Biol, 78 (2016), 2091–2134 | DOI | MR | Zbl

[10] S. Nakaoka, S. Kuwahara, C. H. Lee, H. Jeon, J. Lee, Y. Takeuchi, Y. Kim, “Chronic inflammation in the epidermis: a mathematical model”, Appl. Sci., 6 (2016), 252–286 | DOI

[11] M. Kalita, B. Tian, B. Gao, S. Choudhary, T. G. Wood, J. R. Carmical, I. Boldogh, S. Mitra, J. D. Minna, A. R. Brasier, “Systems approaches to modeling chronic mucosal inflammation”, BioMed Research Internat, 2013 (2013), 505864 | DOI

[12] P. K. Roy, J. Bhadra, B. Chattopadhyay, “Mathematical modeling on immunopathogenesis in chronic plaque of psoriasis: A theoretical study”, Proc. World Congress Engrg., v. 1, 2010, 550–555

[13] W. Hao, H. M. Komar, P. A. Hart, D. L. Conwell, G. B. Lesinski, A. Friedman, “Mathematical model of chronic pancreatitis”, Proc. Nat. Acad. Sci., 114 (2017), 5011–5016 | DOI | MR | Zbl

[14] L. Geris, A. Gerisch, R. C. Schugart, “Mathematical modeling in wound healing, bone regeneration and tissue engineering”, Acta Biotheor, 58 (2010), 355–367 | DOI

[15] D. Weihs, A. Gefen, F. J. Vermolen, “Review on experiment-based two- and three-dimensional models for wound healing”, Interface Focus, 6, 20160038 | DOI

[16] S. Nagaraja, A. Wallqvist, J. Reifman, A. Y. Mitrophanov, “Computational approach to characterize causative factors and molecular indicators of chronic wound inflammation”, J. Immunol., 192 (2014), 1824–1834 | DOI

[17] S. Nagaraja, L. Chen, J. Zhou, Y. Zhao, D. Fine, L. A. DiPietro, J. Reifman, A. Y. Mitrophanov, “Predictive analysis of mechanistic triggers and mitigation strategies for pathological scarring in skin wounds”, J. Immunology, 198 (2017), 832–841 | DOI

[18] E. S. Severin (red.), Biochemistry, GEOTAR-MED, M., 2004 (in Russian)

[19] L. E. El'sgol'ts, Introduction to the theory of differential equations with divergent argument, Nauka, M., 1971 (in Russian)

[20] O. F. Voropaeva, T. V. Bayadilov, S. V. Leont'ev, “Mathematical modeling of the cell death dynamics in aseptic inflammation”, International Conference “Modern problems of mathematics, informatics, and mechanics”, Abstracts (Voronezh, December 18-20, 2017), Nauchno-Issled. Publ., Voronezh, 2017, 625–631 (in Russian)

[21] R. Mori, T. Kondo, T. Ohshima, Y. Ishida, N. Mukaida, “Accelerated wound healing in tumor necrosis factor p55-deficient mice with reduced leukocyte infiltration”, FASEB J., 16 (2002), 963–974 | DOI

[22] R. Mirza, L. A. DiPietro, T. J. Koh, “Selective and specific macrophage ablation is detrimental to wound healing in mice”, American J. Pathology, 175:6 (2009), 2454–2462 | DOI

[23] K. Mukai, E. Komatsu, Y. Nakajima, T. Urai, Nasruddin J. Sugama, T. Nakatani, “The effect of 17bestradiol on cutaneous wound healing in protein-malnourished ovariectomized female mouse model”, PLoS ONE, 9:12 (2014), e115564 | DOI

[24] E. C. Leal, E. Carvalho, A. Tellechea, A. Kafanas, F. Kearney C. Tecilazich, S. Kuchibhotla, M. E. Auster, E. Kokkotou, D. J. Mooney, F. W. LoGerfo, L. Pradhan-Nabzdyk, A. Veves, “Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype”, American J. Pathology, 185:6 (2015), 1638–1648 | DOI

[25] S. C. Pan, C. Y. Li, C. Y. Kuo, Y. Z. Kuo, W. Y. Fang, Y. H. Huang, T. C. Hsieh, H. Y. Kao, Y. Kuo et al, “The p53-S100 A2 positive feedback loop negatively regulates epithelialization in cutaneous wound healing”, Sci. Reports, 8 (2018), 963–974

[26] Z. Deng, J. Yin, L. Wei, R. N. Kotian, S. Gao, Z. Yi, W. Xiao, W. Li, Y. Li, “The effect of earthworm extract on promoting skin wound healing”, Biosci. Reports, 38 (2018), BSR20171366 | DOI

[27] J. Bystrom, I. Evans, J. Newson, M. Stables, I. Toor, N. van Rooijen, M. Crawford, P. Colville-Nash, S. Farrow, D. W. Gilroy, “Resolutionphase macrophages possess a unique inflammatory phenotype that is controlled by cAMP”, Blood, 112 (2008), 4117–4127 | DOI

[28] L. Yang, C. X. Ludlow A. Qiu, M. W. Ferguson, G. Brunner, “Active transforming growth factor-b in wound repair: determination using a new assay”, American J. Pathology, 154 (1999), 105–111 | DOI

[29] H. N. Antoniades, T. Galanopoulos, J. Neville-Golden, P. Kiritsy C, S. E. Lynch, “p53 expression during normal tissue regeneration in response to acute cutaneous injury in swine”, J. Clin. Invest., 93 (1994), 2206–2214 | DOI

[30] E. Engelhardt, A. Toksoy, M. Goebeler, S. Debus, E. B. Bröcker, R. Gillitzer, “Chemokines IL-8, GROalpha, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing”, American J. Pathology, 153 (1998), 1849–1860 | DOI

[31] W. W. Kum, S. B. Cameron, R. W. Hung, S. Kalyan, A. W. Chow, “Temporal sequence and kinetics of proinflammatory and anti-inflammatory cytokine secretion induced by toxic shock syndrome toxin 1 in human peripheral blood mononuclear cells”, Infect. Immun., 69 (2001), 7544–7549 | DOI

[32] O. Dewald, G. Ren, G. D. Duerr, M. Zoerlein, C. Klemm, C. Gersch, S. Tincey, L. H. Michael, M. L. Entman, N. G. Frangogiannis, “Of mice and dogs: Species-specific differences in the inflammatory response following myocardial infarction”, Americ. J. Pathology, 164:2 (2004), 665–677 | DOI

[33] O. F. Voropaeva, Ch. A. Tsgoev, “A numerical model of inflammation dynamics in the core of myocardial infarction”, J. Appl. Industr. Math., 13:2 (2019), 372–383 | DOI | MR | Zbl

[34] Ch. A. Tsgoev, O. F. Voropaeva, Yu. I. Shokin, “Mathematical modelling of acute phase of myocardial infarction”, Russ. J. Numer. Anal. Math. Modelling, 35:2 (2020), 111–126 | DOI | MR | Zbl

[35] T. A. Wilgus, S. Roy, J. C. McDaniel, “Neutrophils and wound repair: positive actions and negative reactions”, Adv. Wound Care, 2013, 379–388 | DOI

[36] A. M. Szpaderska, E. I. Egozi, R. L. Gamelli, L. A. DiPietro, “The effect of thrombocytopenia on dermal wound healing”, J. Invest. Dermathology, 120 (2003), 1130–1137 | DOI

[37] B. Höchsmann, A. Moicean, A. Risitano, P. Ljungman, H. Schrezenmeier, “Supportive care in severe and very severe aplastic anemia”, Bone Marrow Transplantation, 48 (2013), 168–173 | DOI

[38] M. R. Elliott, K. M. Koster, P. S. Murphy, “Efferocytosis signaling in the regulation of macrophage inflammatory responses”, J. Immunology, 198 (2017), 1387–1394 | DOI