Families of portraits of some pendulum-like systems in dynamics
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 144-156

Voir la notice de l'article provenant de la source Math-Net.Ru

The so-called pendulum-like systems arise in dynamics of a rigid body in a non-conservative field, in the theory of oscillations, and in theoretical physics. In this article, the methods of analysis are described which allow us to generalize the previous results. Herewith, we deal with some qualitative questions of the theory of ordinary differential equations, the solution of which facilitates studying some dynamical systems. In result of investigating more general classes of systems, we show that these general systems possess the already known family of nonequivalent phase portraits. We also deal with the aspect of integrability.
Keywords: dynamical pendulum-like system, qualitative and numerical analysis. .
@article{SJIM_2020_23_4_a10,
     author = {M. V. Shamolin},
     title = {Families of portraits of some pendulum-like systems in dynamics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {144--156},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a10/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Families of portraits of some pendulum-like systems in dynamics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 144
EP  - 156
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a10/
LA  - ru
ID  - SJIM_2020_23_4_a10
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Families of portraits of some pendulum-like systems in dynamics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 144-156
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a10/
%G ru
%F SJIM_2020_23_4_a10
M. V. Shamolin. Families of portraits of some pendulum-like systems in dynamics. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 4, pp. 144-156. http://geodesic.mathdoc.fr/item/SJIM_2020_23_4_a10/