Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_3_a9, author = {S. I. Fadeev}, title = {Nonlinear oscillations in the clock frequency generator}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {123--138}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a9/} }
S. I. Fadeev. Nonlinear oscillations in the clock frequency generator. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 123-138. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a9/
[1] E. G. Kostsov, “State of the art and future trends of micro and nanoelectromechanics”, Avtometriya, 45:3 (2009), 3–52 (in Russian)
[2] E. G. Kostsov, S. I. Fadeev, “New ectromechanical resonators for gigahertz frequencies”, Avtometriya, 49:2 (2013), 115–122 (in Russian)
[3] E. G. Kostsov, A. A. Sokolov, “A GHz clock frequency MEMS-generator”, Avtometriya, 55:2 (2019), 61–69 (in Russian)
[4] S. I. Fadeev, V. V. Kogai, “Modeling of nonlinear oscillations in a clock frequency MEMS-generator”, Sibir. Zh. Vychisl. Mat., 22:4 (2019), 489–501 (in Russian)
[5] A. A. Andronov, A. A. Vitt, S. E. Khaikin, Theory of oscillations, Fizmatlit, Moscow, 1959 (in Russian)
[6] S. I. Fadeev, “Numerical study of nonlinear oscillations in a clock frequency MEMS-generator”, J. Appl. Ind. Math., 14:2 (2020), 296–307 (in Russian) | DOI
[7] M. Kholodniok, A. Klich, M. Kubichek, M. Marek, Methods for studying nonlinear dynamical models, Mir, Moscow, 1991
[8] V. V. Kogai, S. I. Fadeev, “Application of the parameter continuation approach based on the multishooting method to numerical study of nonlinear boundary value problems”, Sibir. Zh. Industr. Mat., 4:1 (2001), 83–101
[9] S. I. Fadeev, V. V. Kogai, Linear and nonlinear Boundary Value Problems for Systems of Ordinary Differential Equations, Publ. Novosib. Gos. Univ., Novosibirsk, 2018 (in Russian)