Nonlinear oscillations in the clock frequency generator
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 123-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the mathematical model of a clock frequency generator in which some high-frequency oscillations of a movable electrode are excited by a sequence of concentrated electrostatic pulses; wherein the times of pulse action are coordinated with the oscillations of the movable electrode by analogy with the well-known theory of a trigger clock. The results of studying the mathematical model provide a fairly complete understanding of the properties of the oscillations that are excited in the generator.
Keywords: mathematical model, frequency generator, periodic oscillations, limit cycle, stability, phase plane, boundary value problem, continuation of a solution with respect to a parameter. .
@article{SJIM_2020_23_3_a9,
     author = {S. I. Fadeev},
     title = {Nonlinear oscillations in the clock frequency generator},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {123--138},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a9/}
}
TY  - JOUR
AU  - S. I. Fadeev
TI  - Nonlinear oscillations in the clock frequency generator
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 123
EP  - 138
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a9/
LA  - ru
ID  - SJIM_2020_23_3_a9
ER  - 
%0 Journal Article
%A S. I. Fadeev
%T Nonlinear oscillations in the clock frequency generator
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 123-138
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a9/
%G ru
%F SJIM_2020_23_3_a9
S. I. Fadeev. Nonlinear oscillations in the clock frequency generator. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 123-138. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a9/

[1] E. G. Kostsov, “State of the art and future trends of micro and nanoelectromechanics”, Avtometriya, 45:3 (2009), 3–52 (in Russian)

[2] E. G. Kostsov, S. I. Fadeev, “New ectromechanical resonators for gigahertz frequencies”, Avtometriya, 49:2 (2013), 115–122 (in Russian)

[3] E. G. Kostsov, A. A. Sokolov, “A GHz clock frequency MEMS-generator”, Avtometriya, 55:2 (2019), 61–69 (in Russian)

[4] S. I. Fadeev, V. V. Kogai, “Modeling of nonlinear oscillations in a clock frequency MEMS-generator”, Sibir. Zh. Vychisl. Mat., 22:4 (2019), 489–501 (in Russian)

[5] A. A. Andronov, A. A. Vitt, S. E. Khaikin, Theory of oscillations, Fizmatlit, Moscow, 1959 (in Russian)

[6] S. I. Fadeev, “Numerical study of nonlinear oscillations in a clock frequency MEMS-generator”, J. Appl. Ind. Math., 14:2 (2020), 296–307 (in Russian) | DOI

[7] M. Kholodniok, A. Klich, M. Kubichek, M. Marek, Methods for studying nonlinear dynamical models, Mir, Moscow, 1991

[8] V. V. Kogai, S. I. Fadeev, “Application of the parameter continuation approach based on the multishooting method to numerical study of nonlinear boundary value problems”, Sibir. Zh. Industr. Mat., 4:1 (2001), 83–101

[9] S. I. Fadeev, V. V. Kogai, Linear and nonlinear Boundary Value Problems for Systems of Ordinary Differential Equations, Publ. Novosib. Gos. Univ., Novosibirsk, 2018 (in Russian)