Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_3_a8, author = {N. V. Pertsev and K. K. Loginov and V. A. Topchii}, title = {Analysis of a stage-dependent epidemic model based on a {non-Markov} random process}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {105--122}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a8/} }
TY - JOUR AU - N. V. Pertsev AU - K. K. Loginov AU - V. A. Topchii TI - Analysis of a stage-dependent epidemic model based on a non-Markov random process JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 105 EP - 122 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a8/ LA - ru ID - SJIM_2020_23_3_a8 ER -
%0 Journal Article %A N. V. Pertsev %A K. K. Loginov %A V. A. Topchii %T Analysis of a stage-dependent epidemic model based on a non-Markov random process %J Sibirskij žurnal industrialʹnoj matematiki %D 2020 %P 105-122 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a8/ %G ru %F SJIM_2020_23_3_a8
N. V. Pertsev; K. K. Loginov; V. A. Topchii. Analysis of a stage-dependent epidemic model based on a non-Markov random process. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 105-122. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a8/
[1] A. T. Barucha-Rid, Elements of the theory of markov processes and their applications, Nauka, Moscow, 1969 (in Russian)
[2] S. Karlin, Fundamentals of the theory of random processes, Mir, Moscow, 1971 (in Russian)
[3] T. Kharris, Theory of branching random processes, Mir, Moscow, 1966 (in Russian)
[4] P. Jagers, Branching Processes with Biological Applications, Wiley and Sons, London, 1975 | Zbl
[5] B. A. Sevast'yanov, A. V. Kalinkin, “Branching random processes with interaction between particles”, Dokl. Akad. Nauk SSSR, 264:2 (1982), 306–308 (in Russian) | Zbl
[6] A. V. Kalinkin, “Branching Markov processes with interactions”, Uspekhi Mat. Nauk, 57:2 (2002), 23–84 (in Russian) | Zbl
[7] A. M. Lange, “On the distribution of the number of final particles of a branching process with transformations and pair interactions”, Teor. Veroyatnost. i Primenen., 51:4 (2006), 801–809 (in Russian)
[8] A. V. Mastikhin, “Final distribution for the ghani epidemic Markov process”, Mat. Zametki, 82:6 (2007), 873–884 (in Russian) | Zbl
[9] D. S. Taltavull, A. Vieiro, T. Alarcon, “Stochastic modelling of the eradication of the HIV-1 infection by stimulation of latently infected cells in patients under highly active anti-retroviral therapy”, J. Math. Biol., 73 (2016), 919–946 | DOI | Zbl
[10] A. N. Startsev, “On the distribution of the size of an epidemic in a non-Markovian model”, Theory Probab. Appl., 41:4 (1997), 730–740 | DOI | Zbl
[11] T. Chou, C. D. Greenman, “A hierarchical kinetic theory of birth, death and fission in age-structured interacting populations”, J. Stat. Phys., 164:1 (2016), 49–76 | DOI | Zbl
[12] N. V. Pertsev, B. J. Pichugin, “An individual-based stochastic model of the spread of tuberculosis”, J. Appl. Ind. Math., 4:3 (2010), 359–370 | DOI
[13] B. J. Pichugin, N. V. Pertsev, V. A. Topchii, K. K. Loginov, “Stochastic modeling of age-structed population with time and size dependence of immigration rate”, Russ. J. Numer. Anal. Math. Modelling, 33:5 (2018), 289–299 | DOI | Zbl
[14] N. V. Pertsev, B. Yu. Pichugin, K. K. Loginov, “Stochastic analog of the dynamic model of HIV-1 infection described by delay differential equations”, J. Appl. Ind. Math., 13:1 (2019), 103–117 | DOI | Zbl
[15] K. K. Loginov, N. V. Pertsev, V. A. Topchii, “Stochastic modeling of compartmental systems with pipes”, Mat. Biol. Bioinform., 14:1 (2019), 188–203 (in Russian)
[16] K. K. Avilov, A. A. Romanyukha, E. M. Belilovskii, S. E. Borisov, “Comparison of modeling schemes for natural course of pulmonary tuberculosis”, Mat. Biol. Bioinform., 14:2 (2019), 570–587 (in Russian)
[17] M. A. Marchenko, G. A. Mikhailov, “Parallel realization of statistical simulation and random number generators”, Russ. J. Numer. Anal. Math. Modelling, 17 (2002), 113–124 | DOI | Zbl
[18] M. Marchenko, “PARMONC A Software library for massively parallel stochastic simulation”, Parallel Computing Technologies, Lecture Notes in Computer Science, 6873, Springer-Verl., Berlin–Heidelberg, 2011, 302–316 | DOI
[19] G. A. Mikhailov, A. V. Voitishek, Numerical Statistical Modeling. Monte Carlo methods, Akademiya, Moscow, 2006 (in Russian)
[20] G. Kramer, Mathematical Methods of Statistics, Princeton University Press, Princeton, 1946