Analysis of a stage-dependent epidemic model based on a non-Markov random process
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 105-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present some stochastic model of an infection spread among the adult population of a certain region. The model bases on a random birth and death process supplemented by the point distributions that reflect the durations of stay of individuals at various stages of the disease. The durations of some stages of the disease are assumed constant. The model is a stochastic analog of a system of delay differential equations and convolution integral equations describing the infection spread in the deterministic approach. We address the problem of the infection eradication over a time span comparable to the average lifetime of several generations of individuals. The results of computational experiments are presented, where the dynamics of mathematical expectations of the size of certain groups of individuals is studied and the probability of the infection eradication over a finite time span is estimated using the Monte Carlo method.
Keywords: stage-dependent epidemic model, random birth and death process, non-Markov random process, Monte Carlo method, computational experiment, eradication of infection. .
Mots-clés : point distribution
@article{SJIM_2020_23_3_a8,
     author = {N. V. Pertsev and K. K. Loginov and V. A. Topchii},
     title = {Analysis of a stage-dependent epidemic model based on a {non-Markov} random process},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {105--122},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a8/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - K. K. Loginov
AU  - V. A. Topchii
TI  - Analysis of a stage-dependent epidemic model based on a non-Markov random process
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 105
EP  - 122
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a8/
LA  - ru
ID  - SJIM_2020_23_3_a8
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A K. K. Loginov
%A V. A. Topchii
%T Analysis of a stage-dependent epidemic model based on a non-Markov random process
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 105-122
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a8/
%G ru
%F SJIM_2020_23_3_a8
N. V. Pertsev; K. K. Loginov; V. A. Topchii. Analysis of a stage-dependent epidemic model based on a non-Markov random process. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 105-122. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a8/

[1] A. T. Barucha-Rid, Elements of the theory of markov processes and their applications, Nauka, Moscow, 1969 (in Russian)

[2] S. Karlin, Fundamentals of the theory of random processes, Mir, Moscow, 1971 (in Russian)

[3] T. Kharris, Theory of branching random processes, Mir, Moscow, 1966 (in Russian)

[4] P. Jagers, Branching Processes with Biological Applications, Wiley and Sons, London, 1975 | Zbl

[5] B. A. Sevast'yanov, A. V. Kalinkin, “Branching random processes with interaction between particles”, Dokl. Akad. Nauk SSSR, 264:2 (1982), 306–308 (in Russian) | Zbl

[6] A. V. Kalinkin, “Branching Markov processes with interactions”, Uspekhi Mat. Nauk, 57:2 (2002), 23–84 (in Russian) | Zbl

[7] A. M. Lange, “On the distribution of the number of final particles of a branching process with transformations and pair interactions”, Teor. Veroyatnost. i Primenen., 51:4 (2006), 801–809 (in Russian)

[8] A. V. Mastikhin, “Final distribution for the ghani epidemic Markov process”, Mat. Zametki, 82:6 (2007), 873–884 (in Russian) | Zbl

[9] D. S. Taltavull, A. Vieiro, T. Alarcon, “Stochastic modelling of the eradication of the HIV-1 infection by stimulation of latently infected cells in patients under highly active anti-retroviral therapy”, J. Math. Biol., 73 (2016), 919–946 | DOI | Zbl

[10] A. N. Startsev, “On the distribution of the size of an epidemic in a non-Markovian model”, Theory Probab. Appl., 41:4 (1997), 730–740 | DOI | Zbl

[11] T. Chou, C. D. Greenman, “A hierarchical kinetic theory of birth, death and fission in age-structured interacting populations”, J. Stat. Phys., 164:1 (2016), 49–76 | DOI | Zbl

[12] N. V. Pertsev, B. J. Pichugin, “An individual-based stochastic model of the spread of tuberculosis”, J. Appl. Ind. Math., 4:3 (2010), 359–370 | DOI

[13] B. J. Pichugin, N. V. Pertsev, V. A. Topchii, K. K. Loginov, “Stochastic modeling of age-structed population with time and size dependence of immigration rate”, Russ. J. Numer. Anal. Math. Modelling, 33:5 (2018), 289–299 | DOI | Zbl

[14] N. V. Pertsev, B. Yu. Pichugin, K. K. Loginov, “Stochastic analog of the dynamic model of HIV-1 infection described by delay differential equations”, J. Appl. Ind. Math., 13:1 (2019), 103–117 | DOI | Zbl

[15] K. K. Loginov, N. V. Pertsev, V. A. Topchii, “Stochastic modeling of compartmental systems with pipes”, Mat. Biol. Bioinform., 14:1 (2019), 188–203 (in Russian)

[16] K. K. Avilov, A. A. Romanyukha, E. M. Belilovskii, S. E. Borisov, “Comparison of modeling schemes for natural course of pulmonary tuberculosis”, Mat. Biol. Bioinform., 14:2 (2019), 570–587 (in Russian)

[17] M. A. Marchenko, G. A. Mikhailov, “Parallel realization of statistical simulation and random number generators”, Russ. J. Numer. Anal. Math. Modelling, 17 (2002), 113–124 | DOI | Zbl

[18] M. Marchenko, “PARMONC A Software library for massively parallel stochastic simulation”, Parallel Computing Technologies, Lecture Notes in Computer Science, 6873, Springer-Verl., Berlin–Heidelberg, 2011, 302–316 | DOI

[19] G. A. Mikhailov, A. V. Voitishek, Numerical Statistical Modeling. Monte Carlo methods, Akademiya, Moscow, 2006 (in Russian)

[20] G. Kramer, Mathematical Methods of Statistics, Princeton University Press, Princeton, 1946