On convergence of computational algorithms for a variational problem of identifying the coefficients of difference equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 77-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the variational problem of identifying the coefficients of difference equations which the modified Prony method of extracting the sinusoids and exponentials from observations reduces to. We study the convergence of computational algorithms that are based on inverse iterations in a variable metric.
Keywords: difference equations, modified Prony method, nonlinear eigenvalue problem, inverse iterations
Mots-clés : coefficient identification, variational identification method, convergence. .
@article{SJIM_2020_23_3_a6,
     author = {A. A. Lomov},
     title = {On convergence of computational algorithms for a variational problem of identifying the coefficients of difference equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {77--90},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a6/}
}
TY  - JOUR
AU  - A. A. Lomov
TI  - On convergence of computational algorithms for a variational problem of identifying the coefficients of difference equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 77
EP  - 90
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a6/
LA  - ru
ID  - SJIM_2020_23_3_a6
ER  - 
%0 Journal Article
%A A. A. Lomov
%T On convergence of computational algorithms for a variational problem of identifying the coefficients of difference equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 77-90
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a6/
%G ru
%F SJIM_2020_23_3_a6
A. A. Lomov. On convergence of computational algorithms for a variational problem of identifying the coefficients of difference equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 77-90. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a6/

[1] A. A. Lomov, “Local stability in the problem of coefficients of a linear difference equation”, J. Math. Sci., 188:4 (2013), 82–104 | DOI | Zbl

[2] V. I. Kostin, “On extremum points of a function”, Upravlyaemye sistemy, 24 (1984), 35–42 (in Russian)

[3] J. Petersson, K. Holmström, “A review of the parameter estimation problem of fitting positive exponential sums to empirical data”, Appl. Math. Comput., 126:1 (2002), 31–61 | Zbl

[4] A. O. Egorshin, “The least squares method and «fast» algorithms in variational problems of identification and filtration (Method VI)”, Avtometriya, 1988, no. 1, 30–42 (in Russian)

[5] A. A. Lomov, “Variational methods of linear dynamical system identification and problem of local extrema”, Upravlenie Bol'shimi Sistemami, 39 (2012), 53–94 (in Russian)

[6] M. R. Osborne, “Some special nonlinear least squares problems”, SIAM J. Numer. Anal., 12 (1975), 571–592 | DOI | Zbl

[7] G. K. Smyth, MPRONY MATLAB Function: Fits a sum of exponential functions to data by a modified Prony method, , 1990 http://read.pudn.com/downloads72/sourcecode/math/262881/mprony.m__.htm

[8] M. R. Osborne, G. K. Smyth, “A modified Prony algorithm for fitting functions defined by difference equations”, SIAM J. Sci. Statist. Comput., 12 (1991), 362–382 | DOI | Zbl

[9] V. Pereyra, G. Scherer, “Exponential data fitting”, Exponential Data Fitting and Its Applications, Bentham Sci. Publ., 2010, 1–26

[10] A. A. Lomov, “Identification of linear dynamical systems by short parts of transients with additive measuring disturbances”, J. Comp. Syst. Sci. Internat., 36:3 (1997), 346–352 | Zbl

[11] E. M. Khasina, A. A. Lomov, “Audio files compression with the STLS-ESM method”, Nauch. Tekhn. Vedomosti SPbGPU. Inform. Telekomm. Upravl., 229:5 (2015), 88–96

[12] M. R. Osborne, “A class of nonlinear regression problems”, Data Representation, Queensland Press, St. Lucia, 1970, 94–101

[13] A. O. Egorshin, V. P. Budyanov, “Signal smoothing and dynamical parameters estimates in automatic systems by digital computers”, Avtometriya, 1973, no. 1, 78–82

[14] B. Moor De, “Structured total least squares and $L_2$ approximation problems”, Linear Algebra Appl., 188–189 (1993), 163–207 | DOI

[15] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965 | Zbl

[16] B. De Moor, “The Riemannian singular value decomposition”, SVD and Signal Processing, III: Algorithms, Architectures and Applications, Elsevier, Amsterdam–N.Y., 1995, 61–78 | Zbl

[17] M. R. Osborne, G. K. Smyth, “A modified prony algorithm for exponential function fitting”, SIAM J. Sci. Comput., 16 (1995), 119–138 | DOI | Zbl

[18] A. O. Egorshin, “To fitting extremum parameters in a variational identification problem”, Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform., 11:3 (2011), 95–113 (in Russian) | Zbl

[19] V. G. Demidenko, “Recovery of parameters for a homogeneous linear dynamical model of gene networks”, Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform., 8:3 (2008), 51–59 (in Russian) | Zbl

[20] V. G. Demidenko, “Recovery of coefficients for systems of linear difference equations”, Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform., 10:2 (2010), 45–53 (in Russian) | Zbl

[21] A. A. Lomov, “On convergence of an algorithm with inverse iterations in a modified Prony method”, Sibir. Elektron. Mat. Izv., 15 (2018), 1513–1529 (in Russian) | Zbl

[22] A. A. Lomov, “On convergence of the osborne algorithms with inverse iterations in a modified Prony method”, Sibir. Elektron. Mat. Izv., 16 (2019), 1916–1926 (in Russian) | Zbl