Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_3_a5, author = {N. P. Lazarev and G. M. Semenova}, title = {Equilibrium problem for a {Timoshenko} plate}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {65--76}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a5/} }
N. P. Lazarev; G. M. Semenova. Equilibrium problem for a Timoshenko plate. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 65-76. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a5/
[1] A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000
[2] A. M. Khludnev, Elasticity Theory Problems in Nonsmooth Domains, Fizmatlit, Moscow, 2010 (in Russian)
[3] A. Khludnev, A. C. Esposito, L. Faella, “Optimal control of parameters for elastic body with thin inclusions”, J. Optim. Theory Appl., 184:1 (2020), 293–314 | DOI | Zbl
[4] A. Khludnev, T. Popova, “Semirigid inclusions in elastic bodies: Mechanical interplay and optimal control”, Comput. Math. Appl., 77:1 (2019), 253–262 | DOI | Zbl
[5] I. V. Fankina, “On the equilibrium of a two-layer elastic structure with a crack”, J. Appl. Ind. Math., 13:4 (2019), 629–641 | DOI
[6] N. P. Lazarev, G. M. Semenova, “Optimal Control of the Location of a Thin Rigid Inclusion in the Equilibrium Problem of an Inhomogeneous Two-Dimensional Body with a Crack”, J. Appl. Ind. Math., 13:1 (2019), 76–84 | DOI | Zbl
[7] E. M. Rudoy, V. V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Sibir. Elektron. Mat. Izv., 13 (2016), 395–410 | Zbl
[8] N. A. Kazarinov, E. M. Rudoy, V. Y. Slesarenko, V. V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Comp. Math. Math. Phys., 58:5 (2018), 761–774 | DOI | Zbl
[9] A. M. Khludnev, V. V. Shcherbakov, “A note on crack propagation paths inside elastic bodies”, Appl. Math. Lett., 79:1 (2018), 80–84 | DOI
[10] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, Int. J. Solids Struct., 182–183 (2020), 100–111 | DOI
[11] N. V. Neustroeva, N. P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate with a crack on the boundary of an elastic inclusion”, J. Appl. Ind. Math., 11:2 (2017), 252–262 | DOI | Zbl
[12] E. V. Pyatkina, “A Contact Problem for Two Plates of the Same Shape Glued Along One Edge of a Crack”, J. Appl. Ind. Math., 12:2 (2018), 334–346 | DOI | Zbl
[13] N. P. Lazarev, “Iteration penalty method for a nonlinear problem of equilibrium of a Timoshenko plate with a crack”, Sibir. Zhurn. Vychisl. Matematiki, 14:4 (2011), 381–392 (in Russian) | Zbl
[14] N. P. Lazarev, H. Itou, N. V. Neustroeva, “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Japan. J. Ind. Appl. Math., 33:1 (2016), 63–80 | DOI | Zbl
[15] N. P. Lazarev, E. M. Rudoy, “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | Zbl
[16] S. P. Timoshenko, S. Voinovskii-Kriger, Plates and Shells, Nauka, Moscow, 1966 (in Russian)
[17] G. L. Kolmogorov, T. E. Mel'nikova, “Application of the Ritts–Timoshenko method for computing flexible circular plates”, Prikl. Matematika i Voprosy Upravleniya, 2016, no. 2, 14–23 (in Russian)
[18] N. P. Lazarev, T. S. Popova, “A variational equilibrium problem of a plate with a geometrically nonlinear condition of nonpenetration for a vertical crack”, Vestnik Novosib. Gos. Univ. Ser. Matematika, mekhanika, informatika, 11:2 (2011), 77–88 (in Russian) | Zbl
[19] B. L. Pelekh, Theory of shells with finite shear rigidity, Naukova dumka, Kiev, 1973 (in Russian)
[20] N. P. Lazarev, “The equilibrium problem for a Timoshenko-Type shallow shell containing a through crack”, J. Appl. Ind. Math., 7:1 (2013), 78–88 | DOI | Zbl
[21] N. P. Lazarev, “An equilibrium problem for a Timoshenko plate with an inclined crack”, Prikl. Mekh. Tekhn. Fiz., 54:4 (2013), 171–181 (in Russian) | Zbl
[22] A. S. Vol'mir, Nonlinear dynamics of plates and shells, Nauka, Moscow, 1972 (in Russian)