Equilibrium problem for a Timoshenko plate
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 65-76

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration are the variational problems concerning the equilibrium of plates containing a crack. Two new mathematical models are proposed in which the nonpenetration conditions define the corresponding nonconvex sets of admissible functions. The first model describes the equilibrium of a Timoshenko plate with a crack, and the second corresponds to a composite plate containing a crack along a Kirchhoff—Love elastic inclusion. The proposed approach is substantiated by an explicit example. We prove the existence of solutions for the corresponding variational problems and show that the equilibrium equations are satisfied for each of the problems.
Keywords: variational problem, plate, crack, nonlinear boundary condition. .
@article{SJIM_2020_23_3_a5,
     author = {N. P. Lazarev and G. M. Semenova},
     title = {Equilibrium problem for a {Timoshenko} plate},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {65--76},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a5/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - G. M. Semenova
TI  - Equilibrium problem for a Timoshenko plate
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 65
EP  - 76
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a5/
LA  - ru
ID  - SJIM_2020_23_3_a5
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A G. M. Semenova
%T Equilibrium problem for a Timoshenko plate
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 65-76
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a5/
%G ru
%F SJIM_2020_23_3_a5
N. P. Lazarev; G. M. Semenova. Equilibrium problem for a Timoshenko plate. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 65-76. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a5/