Equilibrium problem for a Timoshenko plate
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 65-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration are the variational problems concerning the equilibrium of plates containing a crack. Two new mathematical models are proposed in which the nonpenetration conditions define the corresponding nonconvex sets of admissible functions. The first model describes the equilibrium of a Timoshenko plate with a crack, and the second corresponds to a composite plate containing a crack along a Kirchhoff—Love elastic inclusion. The proposed approach is substantiated by an explicit example. We prove the existence of solutions for the corresponding variational problems and show that the equilibrium equations are satisfied for each of the problems.
Keywords: variational problem, plate, crack, nonlinear boundary condition. .
@article{SJIM_2020_23_3_a5,
     author = {N. P. Lazarev and G. M. Semenova},
     title = {Equilibrium problem for a {Timoshenko} plate},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {65--76},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a5/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - G. M. Semenova
TI  - Equilibrium problem for a Timoshenko plate
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 65
EP  - 76
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a5/
LA  - ru
ID  - SJIM_2020_23_3_a5
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A G. M. Semenova
%T Equilibrium problem for a Timoshenko plate
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 65-76
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a5/
%G ru
%F SJIM_2020_23_3_a5
N. P. Lazarev; G. M. Semenova. Equilibrium problem for a Timoshenko plate. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 65-76. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a5/

[1] A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000

[2] A. M. Khludnev, Elasticity Theory Problems in Nonsmooth Domains, Fizmatlit, Moscow, 2010 (in Russian)

[3] A. Khludnev, A. C. Esposito, L. Faella, “Optimal control of parameters for elastic body with thin inclusions”, J. Optim. Theory Appl., 184:1 (2020), 293–314 | DOI | Zbl

[4] A. Khludnev, T. Popova, “Semirigid inclusions in elastic bodies: Mechanical interplay and optimal control”, Comput. Math. Appl., 77:1 (2019), 253–262 | DOI | Zbl

[5] I. V. Fankina, “On the equilibrium of a two-layer elastic structure with a crack”, J. Appl. Ind. Math., 13:4 (2019), 629–641 | DOI

[6] N. P. Lazarev, G. M. Semenova, “Optimal Control of the Location of a Thin Rigid Inclusion in the Equilibrium Problem of an Inhomogeneous Two-Dimensional Body with a Crack”, J. Appl. Ind. Math., 13:1 (2019), 76–84 | DOI | Zbl

[7] E. M. Rudoy, V. V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Sibir. Elektron. Mat. Izv., 13 (2016), 395–410 | Zbl

[8] N. A. Kazarinov, E. M. Rudoy, V. Y. Slesarenko, V. V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Comp. Math. Math. Phys., 58:5 (2018), 761–774 | DOI | Zbl

[9] A. M. Khludnev, V. V. Shcherbakov, “A note on crack propagation paths inside elastic bodies”, Appl. Math. Lett., 79:1 (2018), 80–84 | DOI

[10] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, Int. J. Solids Struct., 182–183 (2020), 100–111 | DOI

[11] N. V. Neustroeva, N. P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate with a crack on the boundary of an elastic inclusion”, J. Appl. Ind. Math., 11:2 (2017), 252–262 | DOI | Zbl

[12] E. V. Pyatkina, “A Contact Problem for Two Plates of the Same Shape Glued Along One Edge of a Crack”, J. Appl. Ind. Math., 12:2 (2018), 334–346 | DOI | Zbl

[13] N. P. Lazarev, “Iteration penalty method for a nonlinear problem of equilibrium of a Timoshenko plate with a crack”, Sibir. Zhurn. Vychisl. Matematiki, 14:4 (2011), 381–392 (in Russian) | Zbl

[14] N. P. Lazarev, H. Itou, N. V. Neustroeva, “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Japan. J. Ind. Appl. Math., 33:1 (2016), 63–80 | DOI | Zbl

[15] N. P. Lazarev, E. M. Rudoy, “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | Zbl

[16] S. P. Timoshenko, S. Voinovskii-Kriger, Plates and Shells, Nauka, Moscow, 1966 (in Russian)

[17] G. L. Kolmogorov, T. E. Mel'nikova, “Application of the Ritts–Timoshenko method for computing flexible circular plates”, Prikl. Matematika i Voprosy Upravleniya, 2016, no. 2, 14–23 (in Russian)

[18] N. P. Lazarev, T. S. Popova, “A variational equilibrium problem of a plate with a geometrically nonlinear condition of nonpenetration for a vertical crack”, Vestnik Novosib. Gos. Univ. Ser. Matematika, mekhanika, informatika, 11:2 (2011), 77–88 (in Russian) | Zbl

[19] B. L. Pelekh, Theory of shells with finite shear rigidity, Naukova dumka, Kiev, 1973 (in Russian)

[20] N. P. Lazarev, “The equilibrium problem for a Timoshenko-Type shallow shell containing a through crack”, J. Appl. Ind. Math., 7:1 (2013), 78–88 | DOI | Zbl

[21] N. P. Lazarev, “An equilibrium problem for a Timoshenko plate with an inclined crack”, Prikl. Mekh. Tekhn. Fiz., 54:4 (2013), 171–181 (in Russian) | Zbl

[22] A. S. Vol'mir, Nonlinear dynamics of plates and shells, Nauka, Moscow, 1972 (in Russian)