Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_3_a4, author = {I. M. Kulikov}, title = {On a modification of the {Rusanov} solver}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {53--64}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a4/} }
I. M. Kulikov. On a modification of the Rusanov solver. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 53-64. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a4/
[1] P. Wang, T. Abel, W. Zhang, “Relativistic hydrodynamic flows using spatial and temporal adaptive structured mesh refinement”, Astrophys. J. Suppl. Ser., 176 (2008), 467–483 | DOI
[2] H. Y. Karen Yang, C. S. Reynolds, “How AGN jets heat the intracluster medium-insights from hydrodynamic simulations”, Astrophys. J., 829 (2016), 90 | DOI
[3] S. Khoperskov, Yu. Venichenko, S. Khrapov, E. Vasiliev, “High performance computing of magnetized galactic disks”, Supercomputing frontiers and innovations, 5 (2018), 103–106
[4] V. Bosch-Ramon, D. Khangulyan, “Understanding the very-high-energy emission from microquasars”, International J. Modern Physics D, 18:3 (2009), 347–387 | DOI | Zbl
[5] C. M. Fromm, M. Perucho, P. Mimica, E. Ros, “Spectral evolution of flaring blazars from numerical simulations”, Astronomy and Astrophysics, 588 (2016), A101 | DOI
[6] A. Janiuk, K. Sapountzis, J. Mortier, I. Janiuk, “Numerical simulations of black hole accretion flows”, Supercomputing frontiers and innovations, 5 (2018), 86–102
[7] H. Nagakura, H. Ito, K. Kiuchi, S. Yamada, “Jet propagations, breakouts, and photospheric emissions in collapsing massive progenitors of long-duration Gamma-ray bursts”, Astrophys. J., 731 (2011), 80 | DOI
[8] P. Hughes, M. Miller, G. Duncan, “Three-dimensional hydrodynamic simulations of relativistic extragalactic jets”, Astrophys. J., 572 (2002), 713–728 | DOI
[9] H. Nagakura, K. Sumiyoshi, S. Yamada, “Three-dimensional Boltzmann hydro code for core collapse in massive stars. I. Special relativistic treatments”, Astrophys. J. Suppl. Ser., 214 (2014), 16 | DOI
[10] E. O'Connor, C. Ott, “A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes”, Classical and Quantum Gravity, 27 (2010), 114103 | DOI | Zbl
[11] S. Komissarov, “Electrodynamics of black hole magnetospheres”, Monthly Notices Royal Astronom. Soc., 350:2 (2004), 427–448 | DOI
[12] S. Komissarov, “Observations of the Blandford-Znajek process and the magnetohydrodynamic Penrose process in computer simulations of black hole magnetospheres”, Monthly Notices Royal Astronom. Soc., 359:3 (2005), 801–808 | DOI
[13] C. Palenzuela, T. Garrett, L. Lehner, S. Liebling, “Magnetospheres of black hole systems in force-free plasma”, Physics Review D, 82 (2010), 044045 | DOI
[14] C. Palenzuela, C. Bona, L. Lehner, O. Reula, “Robustness of the Blanford-Znajek Mechanism”, Classical and Quantum Gravity, 28. Article Number (2011) | DOI | Zbl
[15] C. Palenzuela, L. Lehner, S. Liebling, “Dual Jets from Binary Black Holes”, Science, 329 (2010), 927–930 | DOI
[16] S. Komissarov, “Simulations of the axisymmetric magnetospheres of neutron stars”, Monthly Notices Royal Astronom. Soc., 367:1 (2006), 19–31 | DOI
[17] M. D. Duez, Y. T. Liu, S. L. Shapiro, M. Shibata, B. C. Stephens, “Collapse of magnetized hypermassive neutron stars in general relativity”, Phys. Review Letters, 96 (2006), 031101 | DOI
[18] M. D. Duez, Y. T. Liu, S. L. Shapiro, M. Shibata, B. C. Stephens, “Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity”, Phys. Review D, 73 (2006), 104015 | DOI
[19] M. Shibata, M. D. Duez, Y. T. Liu, S. L. Shapiro, B. C. Stephens, “Magnetized Hypermassive NeutronStar Collapse: A Central Engine for Short Gamma-Ray Bursts”, Phys. Review Letters, 96 (2006), 031102 | DOI
[20] T. Marsh et al, “A radio-pulsing white dwarf binary star”, Nature, 537 (2016), 374–377 | DOI
[21] M. Coleman Miller, N. Yunes, “The new frontier of gravitational waves”, Nature, 568 (2019), 469–476 | DOI
[22] F. Lora-Clavijo, A. Cruz-Osorio, F. Guzman, “CAFE: a new relativistic MHD code”, Astrophys. J. Suppl. Ser., 218:2 (2015), 24 | DOI
[23] J. Stone et al., “Athena: A New Code for Astrophysical MHD”, Astrophys. J. Suppl. Ser., 178 (2008), 137–177 | DOI
[24] Z. Etienne, M. Wan, M. Babiuc, S. McWilliams, A. Choudhary, “GiRaFFE: an open-source general relativistic force-free electrodynamics code”, Classical and Quantum Gravity, 34 (2017), 215001 | DOI | Zbl
[25] Z. Etienne, V. Paschalidis, R. Haas, P. Mosta, S. Shapiro, “IllinoisGRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes”, Classical and Quantum Gravity, 32 (2015), 175009 | DOI | Zbl
[26] M. Rempel, “Extension of the MURAM radiative MHD code for coronal simulations”, Astrophys. J., 834 (2017)
[27] B. Giacomazzo, L. Rezzolla, “WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics”, Classical and Quantum Gravity, 24 (2007), 235 | DOI
[28] V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves with barriers”, Computational Mathematics and Math. Physics, 1 (1961), 267–279
[29] S. Chen, C. Yan, X. Xiang, “Effective low-Mach number improvement for upwind schemes”, Computers and Mathematics with Applications, 75:10 (2018), 3737–3755 | DOI | Zbl
[30] T. Ohwada, Y. Shibata, T. Kato, Nakamura T. A simple, “robust and efficient high-order accurate shockcapturing scheme for compressible flows: Towards minimalism”, J. Computational Physics, 362 (2018), 131–162 | DOI | Zbl
[31] M. Edwards, “The dominant wave-capturing flux: A finite-volume scheme without decomposition for systems of hyperbolic conservation laws”, J. Computational Physics, 218:1 (2006), 275–294 | DOI | Zbl
[32] I. Kulikov, I. Chernykh, A. Tutukov, “A new hydrodynamic code with explicit vectorization instructions optimizations that is dedicated to the numerical simulation of astrophysical gas flow. I. Numerical method, tests, and model problems”, Astrophys. J. Suppl. Ser., 243 (2019), 4 | DOI
[33] I. M. Kulikov, I. G. Chernykh, A. V. Tutukov, “A New Parallel Intel Xeon Phi Hydrodynamics Code for Massively Parallel Supercomputers”, Lobachevskii J. Math., 39:9 (2018), 1207–1216 | DOI | Zbl
[34] Z. Huang, G. Toth, B. der Holst, Y. Chen, T. Gombosi, “A six-moment multi-fluid plasma model”, J. Computational Physics, 387 (2019), 134–153 | DOI
[35] F. Coquel, J. M. Herard, K. Saleh, “A positive and entropy-satisfying finite volume scheme for the Baer–Nunziato model”, J. Computational Physics, 330 (2017), 401–435 | DOI | Zbl
[36] M. H. Abbasi, S. Naderi Lordejani, N. Velmurugan et al, “A Godunov-type scheme for the drift flux model with variable cross section”, J. Petroleum Science and Engineering, 179 (2019), 796–813 | DOI
[37] A. Alvarez Laguna, N. Ozak, A. Lani, H. Deconinck, S. Poedts, “Fully-implicit finite volume method for the ideal two-fluid plasma model”, Computer Physics Communications, 231 (2018), 31–44 | DOI
[38] X. Xu, X. L. Deng, “An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids”, Computer Physics Communications, 201 (2016), 43–62 | DOI | Zbl
[39] X. Xu, Yu. Peng, “Modeling and simulation of injection molding process of polymer melt by a robust SPH method”, Appl. Math. Modelling, 48 (2017), 384–409 | DOI | Zbl
[40] T. R. Teschner, L. Konozsy, K. Jenkins, “A generalised and low-dissipative multi-directional characteristics-based scheme with inclusion of the local Riemann problem investigating incompressible flows without free-surfaces”, Computer Physics Communications, 239 (2019), 283–310 | DOI
[41] H. Nishikawa, K. Kitamura, “Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers”, J. Computational Physics, 227:4 (2008), 2560–2581 | DOI | Zbl
[42] M. Dumbser, D. Balsara, “A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems”, J. Computational Physics, 304 (2016), 275–319 | DOI | Zbl
[43] D. Balsara, J. Li, G. Montecino, “An efficient, second order accurate, universal generalized Riemann problem solver based on the HLLI Riemann solver”, J. Computational Physics, 375 (2018), 1238–1269 | DOI | Zbl