Some model of a suspension filtration in a porous media that accounts for the two-zone and multistage character of deposition kinetics
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 139-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of suspension filtration in a porous medium consisting of active and passive zones is posed and numerically solved in the case of a multistage kinetics of particle deposition. Some mathematical model of the process is proposed that is based on the general conservation laws and additional phenomenological assumptions. The influence of the multistage kinetics of particle deposition on the filtration characteristics is considered. We establish that, as the parameter characterizing the duration of the stage of formation of the irreversible deposition increases, a region with complete saturation of the passive zone capacity appears near the filter inlet. No further increase of the deposition concentration in the passive zone is observed, while the process of particles movement in suspension and deposition of them in the active zone continues.
Keywords: mathematical model, multistage kinetics, porous medium
Mots-clés : suspension, filtration.
@article{SJIM_2020_23_3_a10,
     author = {B. Kh. Khuzhayorov and J. M. Makhmudov and B. M. Fayziev and T. I. Begmatov},
     title = {Some model of a suspension filtration in a porous media that accounts for the two-zone and multistage character of deposition kinetics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {139--151},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a10/}
}
TY  - JOUR
AU  - B. Kh. Khuzhayorov
AU  - J. M. Makhmudov
AU  - B. M. Fayziev
AU  - T. I. Begmatov
TI  - Some model of a suspension filtration in a porous media that accounts for the two-zone and multistage character of deposition kinetics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 139
EP  - 151
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a10/
LA  - ru
ID  - SJIM_2020_23_3_a10
ER  - 
%0 Journal Article
%A B. Kh. Khuzhayorov
%A J. M. Makhmudov
%A B. M. Fayziev
%A T. I. Begmatov
%T Some model of a suspension filtration in a porous media that accounts for the two-zone and multistage character of deposition kinetics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 139-151
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a10/
%G ru
%F SJIM_2020_23_3_a10
B. Kh. Khuzhayorov; J. M. Makhmudov; B. M. Fayziev; T. I. Begmatov. Some model of a suspension filtration in a porous media that accounts for the two-zone and multistage character of deposition kinetics. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 139-151. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a10/

[1] A. Amirtharajah, “Some theoretical and conceptual views of filtration”, J. American Water Works Association, 80:12 (1988), 36–46 | DOI

[2] C. Tien, B. V. Ramarao, Granular Filtration of Aerosols and Hydrosols, Springer-Verl, N.Y., 2007

[3] A. Zamani, B. Maini, “Flow of dispersed particles through porous media deep bed filtration”, J. Petroleum Science and Engineering, 69:1–2 (2009), 71–88 | DOI

[4] S. Vigneswaran, R. Ben, Aim Water, Wastewater, Sludge Filtration, Chapman Hall/CRC Press, Boca Raton, 1989

[5] K. J. Ives, “Theory of filtration”, Proc. Internat. Water Supply Association. Eight Congress (Vienna, 1969), v. 1, K3–K28

[6] J. P. Herzig, D. M. Leclerc, P. Goff, “Flow of suspensions through porous media Application to deep filtration”, J. Indust. Engrg. Chemistry, 62 (1970), 8–35 | DOI

[7] N. D. Ahfir et. al., “Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect”, Hydrogeol. J., 15:4 (2007), 659–668 | DOI

[8] J. M. Kavanagh et. al., “Particle capture models: Comparison with experimental data”, ANZIAM J., 53 (2011), C249–C265 | DOI

[9] C. V. Chrysikopoulos, S. I. Vasiliki, “Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments”, Environ. Sci. Technology, 48 (2014), 6805–13 | DOI

[10] V. E. Katzourakis, C. V. Chrysikopoulos, “Mathematical modeling of colloid and virus cotransport in porous media: application to experimental data”, Adv. Water. Resour., 68 (2014), 62–73 | DOI

[11] B. Bai, T. Xu, Z. Guo, “An experimental and theoretical study of the seepage migration of suspended particles with different sizes”, Hydrogeol. J., 24 (2016), 2063–2078 | DOI

[12] S. A. Bradford et. al., “Modeling colloid attachment, straining, and exclusion in saturated porous media”, Environ. Sci. Technol., 37 (2003), 2242–2250 | DOI

[13] P. Bedrikovetsky, “Upscaling of stochastic micro model for suspension transport in porous media”, Transp. Porous Med., 75 (2008), 335–369 | DOI

[14] G. R. Guedes, F. Al-Abduwani, P. Bedrikovetsky, P. Currie, “Deep-bed filtration under multiple particlecapture mechanisms”, SPE J., 14 (2009), 477–487 | DOI

[15] S. A. Boronin, et. al., “Damage to formation surrounding flooding wells: Modelling of suspension filtration with account of particle trapping and mobilization”, J. Phys. Conf. Ser., 925 (2017), 012009 | DOI

[16] G. Malgaresi, N. Khazali, P. Bedrikovetsky, “Non-monotonic retention profiles during axi-symmetric colloidal flows”, J. Hydrol. Engrg., 580 (2020), 124235 | DOI

[17] C. Tien, Granular Filtration of Aerosols and Hydrosols, Butterworth Publ., Boston, 1989

[18] J. C. Crittenden, R. Rh. Trussell, D. W. Hand, K. J. Howe, G. Tchobanoglous, MWH's Water Treatment: Principles and Design, Wiley, N.Y., 2012

[19] V. Jegatheesan, S. Vigneswaran, “Deep bed filtration: mathematical models and observations”, Crit. Rev. Environ. Sci. Technol., 36:6 (2005), 515–569 | DOI

[20] V. Gitis, A. Adin, I. Rubinstein, “Kinetic models in rapid filtration”, Proc. Amer. Water Works Assoc. Annual Conf. (Chicago, 1999)

[21] V. Gitis, I. Rubinstein, M. Livshits, M. Ziskind, “Deep-bed filtration model with multistage deposition kinetics”, Chem. Engrg. J., 163:1–2 (2010), 78–85 | DOI

[22] C. Gruesbeck, R. E. Collins, “Entertainment and Deposition of Fine Particles in Porous Media”, Soc. Petrol. Engrg. J., 22:6 (1982), 847–856 | DOI

[23] B. Khuzhaerov, “Effects of blockage and erosion on the filtration of suspensions”, J. Engrg. Phys., 58:2 (1990), 185–190 | DOI

[24] B. Kh. Khuzhayorov, “A Model of Colmatation Suffosion Filtration”, J. Porous Media, 2:2 (1999), 163–172 | DOI | Zbl

[25] E. V. Venitsianov, R. N. Rubinshtein, Dynamics of sorption from liquid media, Nauka, Moscow, 1983 (in Russian)

[26] E. V. Venitsianov, M. M. Senyavin, “Mathematical description of suspension clarification by filtration”, Teor. Osn. Khim. Tekhnol., 10:4 (1976), 584–591 (in Russian)

[27] A. A. Samarskii, Theory of difference schemes, Nauka, Moscow, 1983 (in Russian)