An MHD model of an incompressible polymeric fluid:
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 16-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study linear stability of a steady state for a generalization of the basic rheological Pokrovskii—Vinogradov model which describes the flows of melts and solutions of an incompressible viscoelastic polymeric medium in the nonisothermal case under the influence of a magnetic field. We prove that the corresponding linearized problem describing magnetohydrodynamic flows of polymers in an infinite plane channel has the following property: For some values of the conduction current which is given on the electrodes (i.e. at the channel boundaries), there exist solutions whose amplitude grows exponentially (in the class of functions periodic along the channel).
Keywords: incompressible viscoelastic polymeric fluid, rheological correlation, magnetohydrodynamic flow, steady state, spectrum, Lyapunov stability. .
Mots-clés : Poiseuille-type flow
@article{SJIM_2020_23_3_a1,
     author = {A. M. Blokhin and A. S. Rudometova and D. L. Tkachev},
     title = {An {MHD} model of an incompressible polymeric fluid:},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {16--30},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a1/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - A. S. Rudometova
AU  - D. L. Tkachev
TI  - An MHD model of an incompressible polymeric fluid:
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 16
EP  - 30
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a1/
LA  - ru
ID  - SJIM_2020_23_3_a1
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A A. S. Rudometova
%A D. L. Tkachev
%T An MHD model of an incompressible polymeric fluid:
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 16-30
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a1/
%G ru
%F SJIM_2020_23_3_a1
A. M. Blokhin; A. S. Rudometova; D. L. Tkachev. An MHD model of an incompressible polymeric fluid:. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 16-30. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a1/

[1] G. V. Pyshnograi, V. N. Pokrovskii, Yu. G. Yanovskii, I. F. Obraztsov, Yu. N. Karnet, “Constitutive equation of nonlinear viscoelastic (polymer) media in nought approximation by parameter of molecular theory and conclusions for shear and extension”, Dokl. Akad. Nauk, 339:5 (1994), 612–615

[2] V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, Springer-Verl, London–N.Y., 2010

[3] Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Introduction to the mesoscopic theory of fluid polymeric systems, Publ. Altai. Gos. Ped. Akad., Barnaul, 2012 (in Russian)

[4] K. B. Koshelev, G. V. Pyshnograi, A. E. Kuznetsov, M. Yu. Tolstykh, “A temperature dependence of the hydrodynamic characteristics of a polymeric melt flow in a convergent channel”, Mekhanika Kompoz. Materialov i Konstruktsii, 22:2 (2016), 175–191 (in Russian)

[5] A. M. Blokhin, A. V. Egitov, D. L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Comput. Math. Math. Phys., 55:5 (2015), 848–873 | DOI | Zbl

[6] A. M. Blokhin, A. V. Egitov, D. L. Tkachev, “Asymptotics of the spectrum of a linearized problem of the stability of a stationary flow of an incompressible polymer fluid with a space charge”, Comput. Math. Math. Phys., 98:1 (2018), 102–117 | DOI

[7] A. Blokhin, D. Tkachev, A. Yegitov, “Spectral asymptotics of a linearized problem for an incompressible weakly conducting polymeric fluid”, Z. Angrew. Math. Mech., 98:4 (2018), 589–601 | DOI

[8] A. M. Blokhin, D. L. Tkachev, “Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations”, J. Appl. Ind. Math., 8:4 (2014), 467–478 | DOI | Zbl

[9] A. Blokhin, D. Tkachev, “Spectral asymptotics of a linearized problem about flow of an incompressible polymeric fluid. Base flow is analogue of a Poiseuille flow”, AIP Conf. Proc., 2017 (2018), 030028 | DOI

[10] A. M. Blokhin, D. L. Tkachev, “Analogue of the Poiseuille flow for incompressible polymeric fluid with volume charge. Asymptotics of the linearized problem spectrum”, IOP Conf. Series: J. Physics: Conf. Series, 894 (2017), 012096, 6 pp. | DOI

[11] A. M. Blokhin, D. L. Tkachev, A. V. Egitov, “An asymptotic formula for the spectrum of a linear problem describing periodic flows of a polymeric fluid in an infinite plane channel”, Prikl. Mat. i Tekhn. Fiz., 59:6 (2018), 39–51 (in Russian) | Zbl

[12] E. Grenier, Y. Guo, T. T. Nguyen, “Spectral instability of characteristic boundary layer flows”, Duke Math. J., 165:16 (2016), 3085–3146 | DOI | Zbl

[13] L. I. Sedov, Mechanics of continuous media, Nauka, Moscow, 1970 (in Russian)

[14] L. G. Loitsyanskii, Mechanics of Liquids and Gases, Stewartson Pergamon Press, Oxford, 1966

[15] A. B. Vatazhin, G. A. Lyubimov, S. A. Regirer, Magnetic hydrodynamical flows in channels, Nauka, Moscow, 1970 (in Russian)

[16] Bai Shi-I., Introduction to Theory of Compressible Fluid Flow, Inostrannaya Literatura, Moscow, 1962 (in Russian)

[17] A. M. Blokhin, R. E. Semenko, “Steady hydrodynamical flows of nonisothermic incompressible polymeric fluid in a flat channel”, Vestnik Yuzhno-Ural. Gos. Univ. Ser. Mat. Model. Program, 11:4 (2018), 41–54 (in Russian) | Zbl

[18] Y. Shibata, “On the R-boundedness for the two phase problem with phase transition: compressible-incompressible model problem”, Funkcialay Ekvacioj, 59 (2016), 243–287 | DOI | Zbl

[19] A. M. Blokhin, D. L. Tkachev, “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, J. Hyperbolic Diff. Equations, 4:4 (2019), 1–25

[20] A. M. Blokhin, D. L. Tkachev, A. V. Egitov, “Stability of the Poiseuille-type models for a MHD model of an incompressible polymeric fluid”, Prikl. Mat. Mekh., 83:5–6 (2019), 779–789 (in Russian)

[21] A. M. Blokhin, D. L. Tkachev, “Stability of the Poiseuille-type flow for a MHD model of an incompressible polymeric flui”, European J. Mechanics. B: Fluids, 80 (2020), 112–121 | DOI | Zbl

[22] A. N. Akhiezer, N. A. Akhiezer, Electromagnetism and electromagnetic waves, Vysshaya Shkola, Moscow, 1985 (in Russian)

[23] K. Nordling, D. Osterman, Physics Handbook for Science and Engineering, Studentlitteratur, Lund, 1999

[24] L. D. Landau, E. M. Lifshits, Electrodynamic of Continuous Media, Fizmatlit, Moscow, 1959 (in Russian)

[25] M. A. Lavrent'ev, B. V. Shabat, Methods of the Theory of Functions of a Complex Variable, Nauka, Moscow, 1973 (in Russian)