Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_3_a1, author = {A. M. Blokhin and A. S. Rudometova and D. L. Tkachev}, title = {An {MHD} model of an incompressible polymeric fluid:}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {16--30}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a1/} }
TY - JOUR AU - A. M. Blokhin AU - A. S. Rudometova AU - D. L. Tkachev TI - An MHD model of an incompressible polymeric fluid: JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 16 EP - 30 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a1/ LA - ru ID - SJIM_2020_23_3_a1 ER -
A. M. Blokhin; A. S. Rudometova; D. L. Tkachev. An MHD model of an incompressible polymeric fluid:. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 16-30. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a1/
[1] G. V. Pyshnograi, V. N. Pokrovskii, Yu. G. Yanovskii, I. F. Obraztsov, Yu. N. Karnet, “Constitutive equation of nonlinear viscoelastic (polymer) media in nought approximation by parameter of molecular theory and conclusions for shear and extension”, Dokl. Akad. Nauk, 339:5 (1994), 612–615
[2] V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, Springer-Verl, London–N.Y., 2010
[3] Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Introduction to the mesoscopic theory of fluid polymeric systems, Publ. Altai. Gos. Ped. Akad., Barnaul, 2012 (in Russian)
[4] K. B. Koshelev, G. V. Pyshnograi, A. E. Kuznetsov, M. Yu. Tolstykh, “A temperature dependence of the hydrodynamic characteristics of a polymeric melt flow in a convergent channel”, Mekhanika Kompoz. Materialov i Konstruktsii, 22:2 (2016), 175–191 (in Russian)
[5] A. M. Blokhin, A. V. Egitov, D. L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Comput. Math. Math. Phys., 55:5 (2015), 848–873 | DOI | Zbl
[6] A. M. Blokhin, A. V. Egitov, D. L. Tkachev, “Asymptotics of the spectrum of a linearized problem of the stability of a stationary flow of an incompressible polymer fluid with a space charge”, Comput. Math. Math. Phys., 98:1 (2018), 102–117 | DOI
[7] A. Blokhin, D. Tkachev, A. Yegitov, “Spectral asymptotics of a linearized problem for an incompressible weakly conducting polymeric fluid”, Z. Angrew. Math. Mech., 98:4 (2018), 589–601 | DOI
[8] A. M. Blokhin, D. L. Tkachev, “Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations”, J. Appl. Ind. Math., 8:4 (2014), 467–478 | DOI | Zbl
[9] A. Blokhin, D. Tkachev, “Spectral asymptotics of a linearized problem about flow of an incompressible polymeric fluid. Base flow is analogue of a Poiseuille flow”, AIP Conf. Proc., 2017 (2018), 030028 | DOI
[10] A. M. Blokhin, D. L. Tkachev, “Analogue of the Poiseuille flow for incompressible polymeric fluid with volume charge. Asymptotics of the linearized problem spectrum”, IOP Conf. Series: J. Physics: Conf. Series, 894 (2017), 012096, 6 pp. | DOI
[11] A. M. Blokhin, D. L. Tkachev, A. V. Egitov, “An asymptotic formula for the spectrum of a linear problem describing periodic flows of a polymeric fluid in an infinite plane channel”, Prikl. Mat. i Tekhn. Fiz., 59:6 (2018), 39–51 (in Russian) | Zbl
[12] E. Grenier, Y. Guo, T. T. Nguyen, “Spectral instability of characteristic boundary layer flows”, Duke Math. J., 165:16 (2016), 3085–3146 | DOI | Zbl
[13] L. I. Sedov, Mechanics of continuous media, Nauka, Moscow, 1970 (in Russian)
[14] L. G. Loitsyanskii, Mechanics of Liquids and Gases, Stewartson Pergamon Press, Oxford, 1966
[15] A. B. Vatazhin, G. A. Lyubimov, S. A. Regirer, Magnetic hydrodynamical flows in channels, Nauka, Moscow, 1970 (in Russian)
[16] Bai Shi-I., Introduction to Theory of Compressible Fluid Flow, Inostrannaya Literatura, Moscow, 1962 (in Russian)
[17] A. M. Blokhin, R. E. Semenko, “Steady hydrodynamical flows of nonisothermic incompressible polymeric fluid in a flat channel”, Vestnik Yuzhno-Ural. Gos. Univ. Ser. Mat. Model. Program, 11:4 (2018), 41–54 (in Russian) | Zbl
[18] Y. Shibata, “On the R-boundedness for the two phase problem with phase transition: compressible-incompressible model problem”, Funkcialay Ekvacioj, 59 (2016), 243–287 | DOI | Zbl
[19] A. M. Blokhin, D. L. Tkachev, “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, J. Hyperbolic Diff. Equations, 4:4 (2019), 1–25
[20] A. M. Blokhin, D. L. Tkachev, A. V. Egitov, “Stability of the Poiseuille-type models for a MHD model of an incompressible polymeric fluid”, Prikl. Mat. Mekh., 83:5–6 (2019), 779–789 (in Russian)
[21] A. M. Blokhin, D. L. Tkachev, “Stability of the Poiseuille-type flow for a MHD model of an incompressible polymeric flui”, European J. Mechanics. B: Fluids, 80 (2020), 112–121 | DOI | Zbl
[22] A. N. Akhiezer, N. A. Akhiezer, Electromagnetism and electromagnetic waves, Vysshaya Shkola, Moscow, 1985 (in Russian)
[23] K. Nordling, D. Osterman, Physics Handbook for Science and Engineering, Studentlitteratur, Lund, 1999
[24] L. D. Landau, E. M. Lifshits, Electrodynamic of Continuous Media, Fizmatlit, Moscow, 1959 (in Russian)
[25] M. A. Lavrent'ev, B. V. Shabat, Methods of the Theory of Functions of a Complex Variable, Nauka, Moscow, 1973 (in Russian)