Numerical study of nonlinear oscillations in a clock frequency MEMS-generator
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 133-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is some mathematical model of a clock frequency generator, a device of the MEMS class (microelectromechanical systems). We numerically study the solution of the corresponding second-order ordinary differential equation with nonlinear right-hand side and show that there is a region of the model parameters in which the bounded solutions tend to a stable limit cycle in the phase plane and, therefore, the periodic oscillations are stable with respect to the external perturbations. To determine the boundary of the region, we use the parameter continuation method of the solution of the boundary value problem defining the limit cycle. The model leads to the numerical identification of the region of generator operability.
Keywords: mathematical model, frequency generator, periodic oscillations, limit cycle, stability, phase plane, boundary value problem, parameter continuation method. .
@article{SJIM_2020_23_2_a9,
     author = {S. I. Fadeev},
     title = {Numerical study of nonlinear oscillations in a  clock frequency {MEMS-generator}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {133--147},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a9/}
}
TY  - JOUR
AU  - S. I. Fadeev
TI  - Numerical study of nonlinear oscillations in a  clock frequency MEMS-generator
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 133
EP  - 147
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a9/
LA  - ru
ID  - SJIM_2020_23_2_a9
ER  - 
%0 Journal Article
%A S. I. Fadeev
%T Numerical study of nonlinear oscillations in a  clock frequency MEMS-generator
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 133-147
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a9/
%G ru
%F SJIM_2020_23_2_a9
S. I. Fadeev. Numerical study of nonlinear oscillations in a  clock frequency MEMS-generator. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 133-147. http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a9/

[1] E. G. Kostsov, “State of the art and future trends of micro and nanoelectromechanics”, Avtometriya, 45:3 (2009), 3–52 (in Russian)

[2] Ya. S. Grinberg, Yu. A. Pashkin, E. V. Il?ichev, “Nanomechanical Resonators”, Uspekhi Fiz. Nauk, 182:4 (2012), 407–436 (in Russian) | DOI

[3] E. G. Kostsov, S. I. Fadeev, “New Ectromechanical Resonators for Gigahertz Frequencies”, Avtometriya, 49:2 (2013), 115–122 (in Russian)

[4] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Nauka, M., 1966 (in Russian) | MR

[5] S. I. Fadeev, E. G. Kostsov, D. O. Pimanov, “Study of Mathematical Model of a Microelectromechanical Resonator of a Platform Type”, Vychisl. Tekhnologii, 21:2 (2016), 63–87 (in Russian) | Zbl

[6] S. I. Fadeev, D. O. Pimanov, “Studying the Periodic Solutions of Mathematical Models of Micromechanics under Periodic Step Impact”, Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform., 13:3 (2013), 122–140 (in Russian) | Zbl

[7] V. V. Kogai, S. I. Fadeev, “Application of the Parameter Continuation Approach Based on the Multishooting Method to Numerical Studying the Nonlinear Boundary Value Problems”, Sibir. Zhurn. Industr. Matematiki, 4:1 (2001), 83–101 (in Russian) | MR

[8] S. I. Fadeev, V. V. Kogai, Linear and Nonlinear Boundary Value Problems for Systems of Ordinary Differential Equations, Izd. Novosib. Gos. Univ., Novosibirsk, 2018 (in Russian)

[9] S. I. Fadeev, V. V. Kogai, “Modeling of Nonlinear Oscillations in a Clock Frequency MEMS-Generator”, Sib. Zhurn. Vychisl. Matematiki, 22:4 (2019), 499–511 (in Russian) | MR