Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_2_a8, author = {N. V. Pertsev and K. K. Loginov and V. A. Topchii}, title = {Analysis of an epidemic mathematical model based on delay differential equations}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {119--132}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a8/} }
TY - JOUR AU - N. V. Pertsev AU - K. K. Loginov AU - V. A. Topchii TI - Analysis of an epidemic mathematical model based on delay differential equations JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 119 EP - 132 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a8/ LA - ru ID - SJIM_2020_23_2_a8 ER -
%0 Journal Article %A N. V. Pertsev %A K. K. Loginov %A V. A. Topchii %T Analysis of an epidemic mathematical model based on delay differential equations %J Sibirskij žurnal industrialʹnoj matematiki %D 2020 %P 119-132 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a8/ %G ru %F SJIM_2020_23_2_a8
N. V. Pertsev; K. K. Loginov; V. A. Topchii. Analysis of an epidemic mathematical model based on delay differential equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 119-132. http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a8/
[1] H. Hethcote, “The mathematics of infectious diseases”, SIAM Rev., 42 (2000), 599–653 | DOI | MR | Zbl
[2] S. A. Gourley, Y. Kuang, “A stage-structured predator-prey model and its dependence on maturation delay and death rate”, J. Math. Biol., 49 (2004), 188–200 | DOI | MR | Zbl
[3] G. Huang, Y. Takeuchi, “Global analysis on delay epidemiological dynamic models with nonlinear incidence”, J. Math. Biol., 63 (2011), 125–139 | DOI | MR | Zbl
[4] K. A. Pawelek, S. Liu, F. Pahlevani, L. Rong, “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci., 235:1 (2012), 98–109 | DOI | MR | Zbl
[5] N. V. Pertsev, B. Yu. Pichugin, A. N. Pichugina, “Studying the Asymptotic Behavior of Solutions to Some Models of Epidemic Processes”, Mat. Biologiya i Bioinformatika, 8:1 (2013), 21–48 (in Russian) | DOI | MR
[6] Y. Yuan, J. Belair, “Threshold dynamics in an SEIRS model with latency and temporary immunity”, J. Math. Biol., 69 (2014), 875–904 | DOI | MR | Zbl
[7] M. V. Barbarossa, G. Rost, “Immuno-epidemiology of a population structured by immune status: a mathematical study of waning immunity and immune system boosting”, J. Math. Biol., 71 (2015), 1737–1770 | DOI | MR | Zbl
[8] D. Okuonghae, “A note on some qualitative properties of a tuberculosis differential equation model with a time delay”, Differential Equations Dynam. Systems, 23:2 (2015), 181–194 | DOI | MR | Zbl
[9] G. Fan, H. R. Thieme, H. Zhu, “Delay differential systems for tick population dynamis”, J. Math. Biol., 71 (2015), 1071–1048 | DOI | MR
[10] N. V. Pertsev, “On Correctness Conditions for Integral Models of Some Living Systems”, Differentsial?nye Uravneniya, 53:9 (2017), 1162–1179 | DOI | Zbl
[11] R. Anderson, R. Mei, Infectious Diseases of Humans: Dynamics and Control, Univ. Press, Oxford, 2004
[12] M. I. Perelman, G. I. Marchuk, S. E. Borisov, B. Ya. Kazennykh, K. K. Avilov, A. S. Karkach, A. A. Romanyukha, “Tuberculosis epidemiology in Russia: the mathematical model and data analysis”, Russ. J. Numer. Anal. Math. Modelling, 19:4 (2004), 305–314 | DOI | MR | Zbl
[13] K. K. Avilov, A. A. Romanyukha, E. M. Belilovskii, S. E. Borisov, “Comparison of Schemes of Modeling the Natural Clinical Course of Pulmonary Tuberculosis”, Mat. Biologiya i Bioinformatika, 14:2 (2019), 570–587 | DOI
[14] E. A. Nosova, “Models of Control and Propagation of HIV Infection”, Mat. Biologiya i Bioinformatika, 7:2 (2012), 632–675 (in Russian) | DOI
[15] L. E. El'sgol'ts, S. B. Norkin (eds.), Introduction to the Theory of Differential Equations with Deviation Argument, Academic Press, N.Y.–London, 1973 | MR
[16] V. B. Kolmanovskii, V. R. Nosov, Stability and Periodic Regimes of Systems with Delay, Nauka, M., 1981 (in Russian)
[17] N. V. Pertsev, “On Stability of Solutions to Linear Differential Equations with Delay Appeared in Models of Living Systems”, Mat. Trudy, 22:2 (2019), 157–174 (in Russian)
[18] N. V. Pertsev, “Two-sided estimates for solutions to the Cauchy problem for Wazevski linear differential systems with delay”, Siberian Math. J., 54:6 (2013), 1088–1103 | DOI | MR | Zbl
[19] N. V. Pertsev, “Global solvability and estimates of solutions to the Cauchy problem for the retarded functional-differential equations that are used to model of living systems”, Siberian Math. J., 59:1 (2018), 113–125 | DOI | MR | Zbl