Reconstruction of the Lambert curve in a scattering medium by using pulsed sounding
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 81-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is some mathematical model of the radiation transfer process in a scattering medium initiated by a pulsed point isotropic source. We inspect inverse problem of finding a diffusely reflecting curve by using the two integral overdetermination conditions on the solution of the radiative transfer equation. Some nonlinear differential equation is obtained for the function that describes the shape of the desired curve in the case of the single scattering approximation. Numerical analysis of the inverse problem solution is carried out to check the stability under perturbations of the initial data.
Keywords: inverse problem, radiation transfer equation, pulsed irradiation, volume scattering. .
Mots-clés : diffuse reflection
@article{SJIM_2020_23_2_a5,
     author = {V. A. Kan and I. V. Prokhorov},
     title = {Reconstruction of the {Lambert} curve in a scattering medium by using pulsed sounding},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {81--92},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a5/}
}
TY  - JOUR
AU  - V. A. Kan
AU  - I. V. Prokhorov
TI  - Reconstruction of the Lambert curve in a scattering medium by using pulsed sounding
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 81
EP  - 92
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a5/
LA  - ru
ID  - SJIM_2020_23_2_a5
ER  - 
%0 Journal Article
%A V. A. Kan
%A I. V. Prokhorov
%T Reconstruction of the Lambert curve in a scattering medium by using pulsed sounding
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 81-92
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a5/
%G ru
%F SJIM_2020_23_2_a5
V. A. Kan; I. V. Prokhorov. Reconstruction of the Lambert curve in a scattering medium by using pulsed sounding. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 81-92. http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a5/

[1] V. R. Kireitov, Inverse Problems of Photometry, Vychsl. Tsentr SO AN SSSR, Novosibirsk, 1983 (in Russian)

[2] R. D. Urik, Hydroacoustics Principles, Sudostroenie, L., 1978 (in Russian)

[3] A. V. Bogorodskii, G. V. Yakovlev, E. A. Korepin, A. K. Dolzhikov, Hydroacoustic Technology for Studying and Developing of Ocean, Gidrometeoizdat, L., 1984 (in Russian)

[4] Yu. V. Matvienko, V. A. Voronin, S. P. Tarasov, A. V. Sknarya, E. V. Tutynin, “The Course of Development of Hydroacoustic Technologies for Investigation of Deep-Sea Floor by Using Autonomous Uninhabited Submarines”, Podvodnye Issledovaniya i Robototekhnika, 8:2 (2009), 4–15 (in Russian)

[5] I. V. Prokhorov, V. V. Zolotarev, I. B. Agafonov, “Problem of Acoustic Sounding in Fluctuating Ocean”, Dal'nevost. Mat. Zhurn., 11:1 (2011), 76–87 (in Russian) | MR | Zbl

[6] I. V. Prokhorov, A. A. Sushchenko, “Studying the problem of acoustic sounding of the seabed using methods of radiative transfer theory”, Acoust. Phys., 61:3 (2015), 368–375 | DOI | DOI

[7] I. V. Prokhorov, A. A. Sushchenko, V. A. Kan, “On the problem of reconstructing the floor topography of a fluctuating ocean”, J. Appl. Indust. Math., 9:3 (2015), 412–422 | DOI | MR | MR | Zbl

[8] V. A. Kan, I. V. Prokhorov, A. A. Sushchenko, “Determining the bottom surface according to data of side-scan sonars”, Proc. SPIE, 10035, 2016, 1003518 | DOI

[9] V. A. Kan, I. V. Prokhorov, “Detecting a Diffusely Reflecting Surface Under Pulsed Irradiation”, Dal'nevost. Mat. Zhurn., 18:2 (2018), 206–215 (in Russian) | MR | Zbl

[10] V. R. Kireitov, “On a Problem of Detecting an Optical Surface by Using its Images”, Funkts. Analiz i Ego Prilozheniya, 10:3 (1976), 45–54 (in Russian) | MR

[11] V. A. Sharafutdinov, “On Reconstruction of a Lambertian Optical Curve by its Two Images”, Doklady Akad. Nauk, 249:3 (1979), 565–568 (in Russian) | MR | Zbl

[12] I. V. Prokhorov, A. A. Sushchenko, A. Kim, “Initial boundary value problem for the radiative transfer equation with diffusion matching conditions”, J. Appl. Indust. Math., 11:1 (2017), 115–124 | DOI | MR | Zbl

[13] I. V. Prokhorov, A. A. Sushchenko, “Cauchy Problem for the Radiative Transfer Equation in an Unbounded Medium”, Dal'nevost. Mat. Zhurn., 18:1 (2018), 101–111 (in Russian) | MR | Zbl

[14] A. A. Amosov, “Initial-boundary value problem for the nonstationary radiative transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci., 231:3 (2018), 279–337 | DOI | MR | Zbl

[15] A. A. Amosov, “Nonstationary radiation transfer through a multilayered medium with reflection and refraction conditions”, Math. Methods Appl. Sci., 41:17 (2018), 8115–8135 | DOI | MR | Zbl

[16] I. V. Prokhorov, “The Cauchy problem for the radiation transfer equation with Fresnel and Lambert matching conditions”, Math. Notes, 105:1 (2019), 80–90 | DOI | DOI | MR | Zbl

[17] A. Kim, I. V. Prokhorov, “Initial-boundary value problem for a radiative transfer equation with generalized matching conditions”, Siberian Electronic Math. Reports, 16 (2019), 1036–1056 | MR | Zbl

[18] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987 | MR