Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_2_a5, author = {V. A. Kan and I. V. Prokhorov}, title = {Reconstruction of the {Lambert} curve in a scattering medium by using pulsed sounding}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {81--92}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a5/} }
TY - JOUR AU - V. A. Kan AU - I. V. Prokhorov TI - Reconstruction of the Lambert curve in a scattering medium by using pulsed sounding JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 81 EP - 92 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a5/ LA - ru ID - SJIM_2020_23_2_a5 ER -
%0 Journal Article %A V. A. Kan %A I. V. Prokhorov %T Reconstruction of the Lambert curve in a scattering medium by using pulsed sounding %J Sibirskij žurnal industrialʹnoj matematiki %D 2020 %P 81-92 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a5/ %G ru %F SJIM_2020_23_2_a5
V. A. Kan; I. V. Prokhorov. Reconstruction of the Lambert curve in a scattering medium by using pulsed sounding. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 81-92. http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a5/
[1] V. R. Kireitov, Inverse Problems of Photometry, Vychsl. Tsentr SO AN SSSR, Novosibirsk, 1983 (in Russian)
[2] R. D. Urik, Hydroacoustics Principles, Sudostroenie, L., 1978 (in Russian)
[3] A. V. Bogorodskii, G. V. Yakovlev, E. A. Korepin, A. K. Dolzhikov, Hydroacoustic Technology for Studying and Developing of Ocean, Gidrometeoizdat, L., 1984 (in Russian)
[4] Yu. V. Matvienko, V. A. Voronin, S. P. Tarasov, A. V. Sknarya, E. V. Tutynin, “The Course of Development of Hydroacoustic Technologies for Investigation of Deep-Sea Floor by Using Autonomous Uninhabited Submarines”, Podvodnye Issledovaniya i Robototekhnika, 8:2 (2009), 4–15 (in Russian)
[5] I. V. Prokhorov, V. V. Zolotarev, I. B. Agafonov, “Problem of Acoustic Sounding in Fluctuating Ocean”, Dal'nevost. Mat. Zhurn., 11:1 (2011), 76–87 (in Russian) | MR | Zbl
[6] I. V. Prokhorov, A. A. Sushchenko, “Studying the problem of acoustic sounding of the seabed using methods of radiative transfer theory”, Acoust. Phys., 61:3 (2015), 368–375 | DOI | DOI
[7] I. V. Prokhorov, A. A. Sushchenko, V. A. Kan, “On the problem of reconstructing the floor topography of a fluctuating ocean”, J. Appl. Indust. Math., 9:3 (2015), 412–422 | DOI | MR | MR | Zbl
[8] V. A. Kan, I. V. Prokhorov, A. A. Sushchenko, “Determining the bottom surface according to data of side-scan sonars”, Proc. SPIE, 10035, 2016, 1003518 | DOI
[9] V. A. Kan, I. V. Prokhorov, “Detecting a Diffusely Reflecting Surface Under Pulsed Irradiation”, Dal'nevost. Mat. Zhurn., 18:2 (2018), 206–215 (in Russian) | MR | Zbl
[10] V. R. Kireitov, “On a Problem of Detecting an Optical Surface by Using its Images”, Funkts. Analiz i Ego Prilozheniya, 10:3 (1976), 45–54 (in Russian) | MR
[11] V. A. Sharafutdinov, “On Reconstruction of a Lambertian Optical Curve by its Two Images”, Doklady Akad. Nauk, 249:3 (1979), 565–568 (in Russian) | MR | Zbl
[12] I. V. Prokhorov, A. A. Sushchenko, A. Kim, “Initial boundary value problem for the radiative transfer equation with diffusion matching conditions”, J. Appl. Indust. Math., 11:1 (2017), 115–124 | DOI | MR | Zbl
[13] I. V. Prokhorov, A. A. Sushchenko, “Cauchy Problem for the Radiative Transfer Equation in an Unbounded Medium”, Dal'nevost. Mat. Zhurn., 18:1 (2018), 101–111 (in Russian) | MR | Zbl
[14] A. A. Amosov, “Initial-boundary value problem for the nonstationary radiative transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci., 231:3 (2018), 279–337 | DOI | MR | Zbl
[15] A. A. Amosov, “Nonstationary radiation transfer through a multilayered medium with reflection and refraction conditions”, Math. Methods Appl. Sci., 41:17 (2018), 8115–8135 | DOI | MR | Zbl
[16] I. V. Prokhorov, “The Cauchy problem for the radiation transfer equation with Fresnel and Lambert matching conditions”, Math. Notes, 105:1 (2019), 80–90 | DOI | DOI | MR | Zbl
[17] A. Kim, I. V. Prokhorov, “Initial-boundary value problem for a radiative transfer equation with generalized matching conditions”, Siberian Electronic Math. Reports, 16 (2019), 1036–1056 | MR | Zbl
[18] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987 | MR