Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_2_a4, author = {D. K. Durdiev and A. A. Rahmonov}, title = {The problem of determining the {2D-kernel} in a system of integro-differential equations of a viscoelastic porous medium}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {63--80}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a4/} }
TY - JOUR AU - D. K. Durdiev AU - A. A. Rahmonov TI - The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 63 EP - 80 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a4/ LA - ru ID - SJIM_2020_23_2_a4 ER -
%0 Journal Article %A D. K. Durdiev %A A. A. Rahmonov %T The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium %J Sibirskij žurnal industrialʹnoj matematiki %D 2020 %P 63-80 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a4/ %G ru %F SJIM_2020_23_2_a4
D. K. Durdiev; A. A. Rahmonov. The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 63-80. http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a4/
[1] L. V. Ovsyannikov, “A Nonlinear Cauchy Problem in Scales of Banach Spaces”, Dokl. Akad. Nauk SSSR, 200:4 (1971), 789–792 (in Russian) | Zbl
[2] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute Math. Sci., N. Y., 1974 | MR | Zbl
[3] V. G. Romanov, “On Local Solvability of Some Multidimensional Inverse Problems for Equations of Hyperbolic Type”, Differentsial'nye uravneniya, 25:2 (1989), 275–283 (in Russian) | MR | Zbl
[4] V. G. Romanov, “Problem of determining the speed of sound”, Siberian Math. J., 30:4 (1989), 598–605 | DOI | MR | Zbl
[5] V. G. Romanov, “On Solvability of the Inverse Problems for Hyperbolic Equations in the Class of Functions Analytic in Part of Variables”, Dokl. Akad. Nauk SSSR, 304:4 (1989), 807–811 (in Russian) | Zbl
[6] D. K. Durdiev, “A Multidimensional Inverse Problem for an Equation with Memory”, Siberian Math. J., 35:3 (1994), 514–521 | DOI | MR | Zbl
[7] D. K. Durdiev, “Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations”, Mat. Fiz., Analiz, Geometr., 3:4 (2007), 411–423 (in Russian) | MR | Zbl
[8] D. K. Durdiev, Zh. Sh. Safarov, “Local Solvability of the Problem Of Definition of the Spatial Part of the Multidimensional Kernel in an Integro-Differential Equation of Hyperbolic Type”, Vestnik Samarsk. Gos. Univ. Ser. Fiz. Mat. Nauki, 29:4 (2012), 37–47 (in Russian) | DOI | Zbl
[9] D. K. Durdiev, Zh. D. Totieva, “The Problem of Determining the Multi-Dimensional Kernel of a Viscoelasticity Equation”, Vladikavkaz. Mat. Zh., 17:4 (2015), 18–43 (in Russian) | MR
[10] V. G. Romanov, “A problem of recovering a special two dimension potential in a hyperbolic equation”, Eur. J. Math. Comput. Appl., 4:1 (2016), 32–46
[11] U. D. Durdiev, “A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation”, Eur. J. Math. Comput. Appl., 7:2 (2019), 4–19
[12] U. D. Durdiev, Z. D. Totieva, “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Methods Appl. Sci., 42:18 (2019), 1–12 | DOI | MR
[13] V. G. Romanov, “Inverse problems for equation with a memory”, Eur. J. Math. Comput. Appl., 2:4 (2014), 51–80 | MR
[14] V. G. Romanov, “A Two-Dimensional Inverse Problem for the Viscoelasticity Equation”, Siberian Math. J., 53:6 (2012), 1128–1138 | DOI | MR | Zbl
[15] A. L. Karchevskii, A. G. Fat'yanov, “Numerical Solution of an Inverse Problem for a Delay Elasticity System for a Vertically Inhomogeneous Medium”, Sib. Zhurn. Vychisl. Matematiki, 4:3 (2001), 259–268 (in Russian) | MR
[16] S. I. Kabanikhin, A. L. Karchevsky, A. Lorenzi, “Lavrent'ev regularization of solutions to linear integrodifferential inverse problems”, J. Inverse Ill-Posed Probl., 1:2 (1993), 115–140 | DOI | MR | Zbl
[17] V. G. Romanov, Stability in Inverse Problems, Nauchnyi Mir, M., 2005 (in Russian)
[18] R. Kurant, Partial Differential Equations, Springer-Verl., N. Y., 1962 | MR