The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 63-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the system of integro-differential equations of viscoelastic porous medium. The direct problem is to define the $y$-component of the displacement vectors of the elastic porous body and the liquid from the initial boundary value problem for these equations. We assume that the kernel of the integral term of the first equation depends on time and one of the spatial variables. To determine the kernel, some additional condition is given on the solution of the direct problem for $z=0$. The inverse problem is replaced by an equivalent system of integro-differential equations for the unknown functions. We apply the method of scales of the Banach spaces of analytic functions. The local solvability of the inverse problem is proved in the class of the functions analytic in $x$ and continuous in $t$.
Keywords: inverse problem, Dirac delta function, integro-differential equation, analytic function.
Mots-clés : kernel
@article{SJIM_2020_23_2_a4,
     author = {D. K. Durdiev and A. A. Rahmonov},
     title = {The problem of determining the {2D-kernel} in a system of integro-differential equations of a viscoelastic porous medium},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {63--80},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a4/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - A. A. Rahmonov
TI  - The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 63
EP  - 80
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a4/
LA  - ru
ID  - SJIM_2020_23_2_a4
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A A. A. Rahmonov
%T The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 63-80
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a4/
%G ru
%F SJIM_2020_23_2_a4
D. K. Durdiev; A. A. Rahmonov. The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 63-80. http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a4/

[1] L. V. Ovsyannikov, “A Nonlinear Cauchy Problem in Scales of Banach Spaces”, Dokl. Akad. Nauk SSSR, 200:4 (1971), 789–792 (in Russian) | Zbl

[2] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute Math. Sci., N. Y., 1974 | MR | Zbl

[3] V. G. Romanov, “On Local Solvability of Some Multidimensional Inverse Problems for Equations of Hyperbolic Type”, Differentsial'nye uravneniya, 25:2 (1989), 275–283 (in Russian) | MR | Zbl

[4] V. G. Romanov, “Problem of determining the speed of sound”, Siberian Math. J., 30:4 (1989), 598–605 | DOI | MR | Zbl

[5] V. G. Romanov, “On Solvability of the Inverse Problems for Hyperbolic Equations in the Class of Functions Analytic in Part of Variables”, Dokl. Akad. Nauk SSSR, 304:4 (1989), 807–811 (in Russian) | Zbl

[6] D. K. Durdiev, “A Multidimensional Inverse Problem for an Equation with Memory”, Siberian Math. J., 35:3 (1994), 514–521 | DOI | MR | Zbl

[7] D. K. Durdiev, “Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations”, Mat. Fiz., Analiz, Geometr., 3:4 (2007), 411–423 (in Russian) | MR | Zbl

[8] D. K. Durdiev, Zh. Sh. Safarov, “Local Solvability of the Problem Of Definition of the Spatial Part of the Multidimensional Kernel in an Integro-Differential Equation of Hyperbolic Type”, Vestnik Samarsk. Gos. Univ. Ser. Fiz. Mat. Nauki, 29:4 (2012), 37–47 (in Russian) | DOI | Zbl

[9] D. K. Durdiev, Zh. D. Totieva, “The Problem of Determining the Multi-Dimensional Kernel of a Viscoelasticity Equation”, Vladikavkaz. Mat. Zh., 17:4 (2015), 18–43 (in Russian) | MR

[10] V. G. Romanov, “A problem of recovering a special two dimension potential in a hyperbolic equation”, Eur. J. Math. Comput. Appl., 4:1 (2016), 32–46

[11] U. D. Durdiev, “A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation”, Eur. J. Math. Comput. Appl., 7:2 (2019), 4–19

[12] U. D. Durdiev, Z. D. Totieva, “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Methods Appl. Sci., 42:18 (2019), 1–12 | DOI | MR

[13] V. G. Romanov, “Inverse problems for equation with a memory”, Eur. J. Math. Comput. Appl., 2:4 (2014), 51–80 | MR

[14] V. G. Romanov, “A Two-Dimensional Inverse Problem for the Viscoelasticity Equation”, Siberian Math. J., 53:6 (2012), 1128–1138 | DOI | MR | Zbl

[15] A. L. Karchevskii, A. G. Fat'yanov, “Numerical Solution of an Inverse Problem for a Delay Elasticity System for a Vertically Inhomogeneous Medium”, Sib. Zhurn. Vychisl. Matematiki, 4:3 (2001), 259–268 (in Russian) | MR

[16] S. I. Kabanikhin, A. L. Karchevsky, A. Lorenzi, “Lavrent'ev regularization of solutions to linear integrodifferential inverse problems”, J. Inverse Ill-Posed Probl., 1:2 (1993), 115–140 | DOI | MR | Zbl

[17] V. G. Romanov, Stability in Inverse Problems, Nauchnyi Mir, M., 2005 (in Russian)

[18] R. Kurant, Partial Differential Equations, Springer-Verl., N. Y., 1962 | MR