On the angular moment operators of attenuated ray transforms of scalar 3D-fields
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 51-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration are the operators of angular moments which maps the values of generalized attenuated ray transforms (ART) into the set of symmetric $p$-tensor fields. The differential relations between the values of ARTs of various orders, acting on stationary or dynamic source distributions $f$, serve as the basis for establishing the differential connections between the tensor fields of angular moments of various orders $k$ and ranks $p$. The particular cases are indicated allowing to obtain some previously known results. Connections of the ARTs of order $k$ with the problems of tomography and integral geometry as well as the established properties and connections between ARTs and angular moments can be useful as additional information when constructing the iterative algorithms for solving the problems of dynamic refraction tensor tomography.
Keywords: attenuated ray transform, back projection, operator of angular moment, tensor field
Mots-clés : transport equation. .
@article{SJIM_2020_23_2_a3,
     author = {E. Yu. Derevtsov},
     title = {On the angular moment operators of attenuated ray transforms of scalar {3D-fields}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a3/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
TI  - On the angular moment operators of attenuated ray transforms of scalar 3D-fields
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 51
EP  - 62
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a3/
LA  - ru
ID  - SJIM_2020_23_2_a3
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%T On the angular moment operators of attenuated ray transforms of scalar 3D-fields
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 51-62
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a3/
%G ru
%F SJIM_2020_23_2_a3
E. Yu. Derevtsov. On the angular moment operators of attenuated ray transforms of scalar 3D-fields. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 51-62. http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a3/

[1] J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integrabwerte längs gewisser Mannigfaltigkeiten”, Berichte Sächsische Akademie der Wissenschaften, 69 (1917), 262–277 | Zbl

[2] T. F. Budinger, G. T. Gullberg, R. H. Huesman, “Emission computed tomography”, Image Reconstruction from Projections, Springer-Verl., 1979

[3] F. Natterer, The Mathematics of Computerized Tomography, Wiley, Chichester, 1986 | MR | Zbl

[4] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Urtecht, 1994 | MR

[5] E. Yu. Derevtsov, I. E. Svetov, “Tomography of tensor fields in the plane”, Eurasian J. Math. Comp. Appl., 3:2 (2015), 24–68

[6] F. Natterer, “Inverting the attenuated vectorial Radon transform”, J. Inverse Ill-Posed Probl., 13:1 (2005), 93–101 | DOI | MR | Zbl

[7] S. Kazantsev, A. Bukhgeim, “Inversion of the scalar and vector attenuated x-ray transforms in a unit disc”, J. Inverse Ill-Posed Probl., 15:4 (2007), 735–765 | MR | Zbl

[8] F. Monard, “Inversion of the attenuated geodesic X-ray transform over functions and vector fields on simple surfaces”, SIAM J. Math. Analysis, 48 (2016), 1155–1177 | DOI | MR | Zbl

[9] P. Kuchment, F. Terzioglu, “Inversion of weighted divergent beam and cone transforms”, Inverse Problems and Imaging, 11:6 (2017), 1071–1090 | DOI | MR | Zbl

[10] E. Yu. Derevtsov, S. V. Mal'tseva, “Reconstruction of the singular support of a tensor field given in a refracting medium by its ray transform”, J. Appl. Indust. Math., 9:3 (2015), 447–460 | DOI | MR | MR | Zbl

[11] E. Yu. Derevtsov, S. V. Maltseva, I. E. Svetov, “Mathematical models and algorithms for reconstruction of singular support of functions and vector fields by tomographic data”, Eurasian J. Math. Comp. Appl., 3:4 (2015), 4–44 | MR

[12] E. Yu. Derevtsov, S. V. Maltseva, I. E. Svetov, M. A. Sultanov, “On a Problem of Reconstruction of Discontinuities of a Function by its Attenuated Ray Transform along Geodesics”, Internat. Conf. «Functional analysis in interdisciplinary applications» (FAIA2017) (2–5 October 2017, Astana, Kazakhstan), AIP Conference Proc., 1880, 2017, 060004 | DOI | MR

[13] E. Yu. Derevtsov, S. V. Mal'tseva, I. E. Svetov, “Determination of discontinuities of a function in a domain with refraction from its attenuated ray transform”, J. Appl. Indust. Math., 12:4 (2018), 619–641 | DOI | MR | Zbl

[14] E. Yu. Derevtsov, “A Generalization of Attenuated Ray Transform in Tomography”, Sib. zhurn. chistoi i prikl. matematiki, 18:4 (2018), 29–41 (in Russian) | MR

[15] C. Hamaker, K. T. Smith, D. C. Solmom, S. L. Wagner, “The divergent beam X-ray transform”, Rocky Mountain J. Math., 10:1 (1980), 253–283 | DOI | MR | Zbl

[16] V. A. Sharafutdinov, “A Problem of Integral Geometry for the Generalized Tensor Fields on $\mathbb{R}^n$”, Dokl. Akad. Nauk SSSR, 286:2 (1986), 305–307 (in Russian) | MR | Zbl

[17] U. Schmitt, A. K. Louis, “Efficient algorithms for the regularization of dynamic inverse problems. I: Theory”, Inverse Problems, 18 (2002), 645–658 | DOI | MR | Zbl

[18] U. Schmitt, A. K. Louis, C. Wolters, M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems. II: Applications”, Inverse Problems, 18 (2002), 659–676 | DOI | MR | Zbl

[19] B. Hahn, A. K. Louis, “Reconstruction in the three-dimensional parallel scanning geometry with application in synchrotron-based X-ray tomography”, Inverse Problems, 28:4 (2012), 19 pp. | DOI | MR | Zbl

[20] V. R. Kireitov, Inverse Problems of Photometry, izd. Vychisl. Tsentr Sibir. Otdel. Akad. Nauk SSSR, Novosibirsk, 1983 (in Russian)