Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_2_a3, author = {E. Yu. Derevtsov}, title = {On the angular moment operators of attenuated ray transforms of scalar {3D-fields}}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {51--62}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a3/} }
TY - JOUR AU - E. Yu. Derevtsov TI - On the angular moment operators of attenuated ray transforms of scalar 3D-fields JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 51 EP - 62 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a3/ LA - ru ID - SJIM_2020_23_2_a3 ER -
E. Yu. Derevtsov. On the angular moment operators of attenuated ray transforms of scalar 3D-fields. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 51-62. http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a3/
[1] J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integrabwerte längs gewisser Mannigfaltigkeiten”, Berichte Sächsische Akademie der Wissenschaften, 69 (1917), 262–277 | Zbl
[2] T. F. Budinger, G. T. Gullberg, R. H. Huesman, “Emission computed tomography”, Image Reconstruction from Projections, Springer-Verl., 1979
[3] F. Natterer, The Mathematics of Computerized Tomography, Wiley, Chichester, 1986 | MR | Zbl
[4] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Urtecht, 1994 | MR
[5] E. Yu. Derevtsov, I. E. Svetov, “Tomography of tensor fields in the plane”, Eurasian J. Math. Comp. Appl., 3:2 (2015), 24–68
[6] F. Natterer, “Inverting the attenuated vectorial Radon transform”, J. Inverse Ill-Posed Probl., 13:1 (2005), 93–101 | DOI | MR | Zbl
[7] S. Kazantsev, A. Bukhgeim, “Inversion of the scalar and vector attenuated x-ray transforms in a unit disc”, J. Inverse Ill-Posed Probl., 15:4 (2007), 735–765 | MR | Zbl
[8] F. Monard, “Inversion of the attenuated geodesic X-ray transform over functions and vector fields on simple surfaces”, SIAM J. Math. Analysis, 48 (2016), 1155–1177 | DOI | MR | Zbl
[9] P. Kuchment, F. Terzioglu, “Inversion of weighted divergent beam and cone transforms”, Inverse Problems and Imaging, 11:6 (2017), 1071–1090 | DOI | MR | Zbl
[10] E. Yu. Derevtsov, S. V. Mal'tseva, “Reconstruction of the singular support of a tensor field given in a refracting medium by its ray transform”, J. Appl. Indust. Math., 9:3 (2015), 447–460 | DOI | MR | MR | Zbl
[11] E. Yu. Derevtsov, S. V. Maltseva, I. E. Svetov, “Mathematical models and algorithms for reconstruction of singular support of functions and vector fields by tomographic data”, Eurasian J. Math. Comp. Appl., 3:4 (2015), 4–44 | MR
[12] E. Yu. Derevtsov, S. V. Maltseva, I. E. Svetov, M. A. Sultanov, “On a Problem of Reconstruction of Discontinuities of a Function by its Attenuated Ray Transform along Geodesics”, Internat. Conf. «Functional analysis in interdisciplinary applications» (FAIA2017) (2–5 October 2017, Astana, Kazakhstan), AIP Conference Proc., 1880, 2017, 060004 | DOI | MR
[13] E. Yu. Derevtsov, S. V. Mal'tseva, I. E. Svetov, “Determination of discontinuities of a function in a domain with refraction from its attenuated ray transform”, J. Appl. Indust. Math., 12:4 (2018), 619–641 | DOI | MR | Zbl
[14] E. Yu. Derevtsov, “A Generalization of Attenuated Ray Transform in Tomography”, Sib. zhurn. chistoi i prikl. matematiki, 18:4 (2018), 29–41 (in Russian) | MR
[15] C. Hamaker, K. T. Smith, D. C. Solmom, S. L. Wagner, “The divergent beam X-ray transform”, Rocky Mountain J. Math., 10:1 (1980), 253–283 | DOI | MR | Zbl
[16] V. A. Sharafutdinov, “A Problem of Integral Geometry for the Generalized Tensor Fields on $\mathbb{R}^n$”, Dokl. Akad. Nauk SSSR, 286:2 (1986), 305–307 (in Russian) | MR | Zbl
[17] U. Schmitt, A. K. Louis, “Efficient algorithms for the regularization of dynamic inverse problems. I: Theory”, Inverse Problems, 18 (2002), 645–658 | DOI | MR | Zbl
[18] U. Schmitt, A. K. Louis, C. Wolters, M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems. II: Applications”, Inverse Problems, 18 (2002), 659–676 | DOI | MR | Zbl
[19] B. Hahn, A. K. Louis, “Reconstruction in the three-dimensional parallel scanning geometry with application in synchrotron-based X-ray tomography”, Inverse Problems, 28:4 (2012), 19 pp. | DOI | MR | Zbl
[20] V. R. Kireitov, Inverse Problems of Photometry, izd. Vychisl. Tsentr Sibir. Otdel. Akad. Nauk SSSR, Novosibirsk, 1983 (in Russian)