Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of Drosophila
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results are presented of mathematical and computer simulation of the functioning of the central regulatory circuit (CRC) which is the system integrator of gene networks of morphogenesis of Drosophila mechanoreceptors. The main element of the CRC is represented by the complex of achaete-scute ( AS-C) genes, the main genes of the mechanoreceptor morphogenesis. The content level of the proteins encoded by the AS-C genes is a determining factor for initiating the development of a mechanoreceptor. We carried out a comparative study of the CRC behavior under normal conditions and in the presence of mutational changes in the achaete-scute complex. The results of simulation are in good accord with the available biological data.
Keywords: nonlinear dynamical system, mathematical model, numerical simulation, gene network, Drosophila, central regulatory circuit, mechanoreceptor
Mots-clés : achaete-scute complex, mutation.
@article{SJIM_2020_23_2_a2,
     author = {T. A. Bukharina and A. A. Akinshin and V. P. Golubyatnikov and D. P. Furman},
     title = {Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of {Drosophila}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a2/}
}
TY  - JOUR
AU  - T. A. Bukharina
AU  - A. A. Akinshin
AU  - V. P. Golubyatnikov
AU  - D. P. Furman
TI  - Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of Drosophila
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 41
EP  - 50
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a2/
LA  - ru
ID  - SJIM_2020_23_2_a2
ER  - 
%0 Journal Article
%A T. A. Bukharina
%A A. A. Akinshin
%A V. P. Golubyatnikov
%A D. P. Furman
%T Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of Drosophila
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 41-50
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a2/
%G ru
%F SJIM_2020_23_2_a2
T. A. Bukharina; A. A. Akinshin; V. P. Golubyatnikov; D. P. Furman. Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of Drosophila. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 2, pp. 41-50. http://geodesic.mathdoc.fr/item/SJIM_2020_23_2_a2/

[1] T. A. Bukharina, D. P. Furman, “Genetic Control of Mechanoreceptors Formation in D. melanogaster — The Description in Database «NEUROGENESIS»”, Inform. Vestn. VOGiS, 13:1 (2009), 186–193 (in Russian)

[2] D. P. Furman, T. A. Bukharina, “Prepattern gene network controlling the first stage in Drosophila melanogaster bristle pattern development”, Vavilov J. Genet. Breed., 20:6 (2016), 832–839 | DOI

[3] D. P. Furman, T. A. Bukharina, “The gene network determining development of Drosophila melanogaster mechanoreceptors”, Comp. Biol. Chem., 33 (2009), 231–234 | DOI

[4] A. S. Serebrovskii, N. P. Dubinin, “Artificial Production of Mutations and Gene Problem”, Uspekhi Eksperim. Biol., 4 (1929), 235–247 (in Russian)

[5] I. J. Agol, “Step allelomorphism in Drosophila melanogaster”, Genetics, 16:3 (1931), 254–266

[6] N. P. Dubinin, “Step-allelomorphism in Drosophila melanogaster. The allelomorphs achaete2-scute10, achaete1-scute11, and achaete3-scute13”, J. Genetics, 25:2 (1932), 163–181 | DOI

[7] A. Garcíia-Bellido, J. F. de Celis, “The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development”, Genetics, 182:3 (2009), 631–639 | DOI

[8] J. Modolell, S. Campuzano, “The achaete-scute complex as an integrating device”, Int. J. Dev. Biol., 42:3 (1998), 275–282

[9] P. J. Chang, Y. L. Hsiao, A. C. Tien, Y. C. Li, H. Pi, “Negative-feedback regulation of proneural proteins controls the timing of neural precursor division”, Development, 135:18 (2008), 3021–3030 | DOI

[10] H. Pi, S. K. Huang, C. Y. Tang, Y. H. Sun, C. T. Chien, “Phyllopod is a target gene of proneural proteins in Drosophila external sensory organ development”, Proc. Nat. Acad. Sci. USA, 101:22 (2004), 8378–8383 | DOI

[11] V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, A. A. Evdokimov, S. I. Fadeev, “Theory of Gene Networks”, Systemic computer biology, ed. Kolchanov N.A., Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2008 (in Russian)

[12] T. A. Bukharina, D. P. Furman, V. P. Golubyatnikov, “A model study of the morphogenesis of D. melanogaster mechanoreceptors: The central regulatory circuit”, J. Bioinformatics and Computational Biology, 13:01 (2015), 1540006, 15 pp. | DOI

[13] L. Wilkinson, The Grammar of Graphics, Springer-Verl, N. Y., 2005 | MR | Zbl

[14] M. V. Kazantsev, “Software for Modeling Early Stages of Some Biological Processes”, Vestnik NGU. Ser. vychisl. tekhnol., 14:3 (2016), 25–33 (in Russian)

[15] A. A. Akin'shin, V. P. Golubyatnikov, M. V. Kazantsev, “Comparative Analysis of Some Numerical Methods for Modeling the Gene Networks with Application of Language R”, Selected Papers of International Conference «Lomonosov readings in Altai: Fundamental Problems of Science and Education», Izd. Altai. Gos. Univ., Barnaul, 2014, 548–554 (in Russian)

[16] K. Soetaert, T. Petzoldt, R. W. Setzer, “Solving differential equations in R: package deSolve”, J. Statistical Software, 33:9 (2010), 1–25 http://www.jstatsoft.org/v33/i09 | DOI

[17] A. C. Hindmarsh, “ODEPACK, A systematized collection of ODE solvers”, Scientific Computing, Amsterdam, 1983, 55–64 | MR

[18] N. Reeves, J. W. Posakony, “Genetic programs activated by proneural proteins in the developing Drosophila PNS”, Developmental Cell, 8 (2005), 413–425 | DOI

[19] A. Ghysen, R. Thomas, “The formation of sense organs in Drosophila: a logical approach”, BioEssays, 25 (2003), 802–807 | DOI

[20] M. Roark, M. F. Sturtevant, J. Emery, H. Vaessin, E. Grell, E. Bier, “Scratch, a pan-neural gene encoding a zinc finger protein related to snail, promotes neuronal development”, Genes Development, 9 (1995), 2384–2398 | DOI

[21] H. Jafar-Nejad, M. Acar, R. Nolo, H. Lacin, H. Pan, S. M. Parkhurst, H. J. Bellen, “Senseless acts as a binary switch during sensory organ precursor selection”, Genes Development, 17 (2003), 2966–2978 | DOI

[22] L. M. Escuderol, E. Caminero, K. L. Schulze, H. J. Bellen, J. Modolell, “Charlatan, a Zn-finger transcription factor, establishes a novel level of regulation of the proneural achaete/scute genes of Drosophila”, Development, 132 (2005), 1211–1222 | DOI