Sensitivity analysis and practical identifiability of some mathematical models in biology
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 107-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the identifiability of some mathematical models of spreading TB and HIV coinfections in a population and the dynamics of HIV-infection at the cellular level. Sensitivity analysis is carried out using the orthogonal method and the eigenvalue method which are based on studying the properties of the sensitivity matrix and show the effect of the model coefficient change on simulation results. Practical identifiability is investigated which determines the possibility of reconstructing coefficients from the noisy experimental data. The analysis is performed using the correlation matrix and Monte Carlo method, while taking into consideration the Gaussian noise in measurements. The results of numerical calculations are presented on whose basis we obtain the identifiable sets of parameters.
Keywords: identifiability, ordinary differential equations, sensitivity matrix, sensitivity analysis, method of correlation matrix, Monte Carlo method, inverse problem.
@article{SJIM_2020_23_1_a9,
     author = {O. I. Krivorotko and D. V. Andornaya and S. I. Kabanikhin},
     title = {Sensitivity analysis and practical identifiability of some mathematical models in biology},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {107--125},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a9/}
}
TY  - JOUR
AU  - O. I. Krivorotko
AU  - D. V. Andornaya
AU  - S. I. Kabanikhin
TI  - Sensitivity analysis and practical identifiability of some mathematical models in biology
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 107
EP  - 125
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a9/
LA  - ru
ID  - SJIM_2020_23_1_a9
ER  - 
%0 Journal Article
%A O. I. Krivorotko
%A D. V. Andornaya
%A S. I. Kabanikhin
%T Sensitivity analysis and practical identifiability of some mathematical models in biology
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 107-125
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a9/
%G ru
%F SJIM_2020_23_1_a9
O. I. Krivorotko; D. V. Andornaya; S. I. Kabanikhin. Sensitivity analysis and practical identifiability of some mathematical models in biology. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 107-125. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a9/

[1] B. M. Adams, H. T. Banks, M. Davidian, H. D. Kwon, H. T. Tran, S. N. Wynne, E. S. Rosenberg, “HIV dynamics: Modeling, data analysis, and optimal treatment protocols”, J. Comput. Appl. Math., 184 (2005), 10–49 | DOI | MR | Zbl

[2] L. W. Roeger, Z. Feng, C. Castillo-Chavez, “Modelling TB and HIV Co-infections”, Math. Biosci. Eng., 6:4 (2009), 815–837 | DOI | MR | Zbl

[3] E. Carson, C. Cobelli, Modelling Methodology for Physiology and Medicine, Acad. Press, N.Y., 2001

[4] C. Cobelli, E. Carson, Introduction to Modelling in Physiology and Medicine, Acad. Press, N.Y., 2008

[5] S. Audology, L. Angio, “On the identifiability of linear compartmental system: a revisited transfer function approach based on topological properties”, Math. Biosci., 10:5 (1983), 10–17 | MR

[6] S. I. Kabanikhin, “Definitions and examples of inverse and ill-posed problems”, J. Inverse Ill-Posed Probl., 16 (2008), 317–357 | MR | Zbl

[7] H. Miao, X. Xia, A. S. Perelson, H. We, “On identifiability of nonlinear ODE models and applications in viral dynamics”, SIAM Rec. Soc. Ind. Appl. Math., 53:1 (2011), 3–39 | MR | Zbl

[8] K. Glover, J. Willems, “Parametrization of linear dynamical systems: canonical forms and identifiability”, IEEE Trans. Automat. Control, 19 (1974), 640–646 | DOI | MR | Zbl

[9] R. Bellman, K. Astrom, “On Structural identifiability”, Math. Biosci., 30:4 (1970), 65–74

[10] M. Grewal, K. Glover, “Identifiability of linear and nonlinear dynamical systems”, IEEE Trans. Automat. Control, 21:6 (1976), 833–837 | DOI | MR | Zbl

[11] S. Vajda, “Identifiability of first order reaction systems”, React. Kinet. Catal. Lett., 11:1 (1989), 39–43 | DOI

[12] C. Cobeli, J. DiStefano, “Parameter and structural identifiability concepts and ambiguities: a critical review and analysis”, Am. J. Physiol. Reg. I, 3:3 (1980), 369–380

[13] T. Tunali, T. Tarn, “New results for identifiability of nonlinear systems”, IEEE Trans. Automat. Control, 15 (1987), 45–51 | MR

[14] V. F. Shcherbak, “Conditions for identifiability of dynamical systems”, Mat. Fiz., 34 (1983), 105–108

[15] A. A. Levakov, “Identifiability of nonlinear systems”, Differentsial'nye uravneniya, 19:6 (1983), 1074–1078 (in Russian) | MR

[16] V. V. Karelin, Methods for Identification and Optimization of Control Systems, Methodological Directions, Publ. St. Petersburg Univ., St. Petersburg, 1990 (in Russian)

[17] A. A. Lomov, “Simultaneous identifiability of coefficients of linear difference equations of the object and additive disturbances”, Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform., 15:4 (2015), 46–57 (in Russian)

[18] T. V. Avdeenko, S. A. Kargin, “Analysis of identifiability of linear dynamical models with application of separators of a parametric space”, Sibir. Zh. Indust. Mat., 9:3 (2006), 3–16 | Zbl

[19] M. Saccomani, C. Cobeli, “Qualitative experiment design in physiological system identification”, IEEE Control System, 3:12 (1992), 18–23

[20] R. Brown, “Compartmental system analysis: state of the art”, IEEE Trans. Biomed. Eng., 14:3 (1980), 31–41

[21] R. Brown, “Identifiability: role in design of pharmacokinetic experiments”, IEEE Trans. Biomed. Eng., 14:3 (1982), 31–41

[22] M. Saccomani, S. Audoly, L. Angio, “An effective automatic procedure for testing parameter identifiability of HIV/AIDS models”, Bull. Math. Biol., 73 (1978), 1734–1753 | DOI | MR

[23] G. Bellu, M. Saccomani, S. Audoly, L. D'Angio, “Daisy: A new software tool to test global identifiablity of biological and physiological system”, Comp. Meth. Prog. Biomed. Math. Biosci., 88:1 (2007), 52–61 | DOI

[24] N. Meshkat, C. E. Kuo, J. J. DiStefano, “Finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: A novel web implementation”, Plos One, 9:10 (2014), e110261 | DOI

[25] N. Meshkat, C. Anderson, J. J. DiStefano, “Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models”, Math. Biosci., 239:1 (2012), 117–123 | DOI | MR | Zbl

[26] A. Raue, J. Karlsson, M. P. Saccomani, M. Jirstrand, J. Timme, “Comparison of approaches for parameter identifiability analysis of biological systems”, Bioinformatics, 30:10 (2014), 1440–1448 | DOI

[27] S. I. Kabanikhin, D. A. Voronov, A. A. Grodz, O. I. Krivorotko, “Identifiability of mathematical models of medicine biology”, Vavilov Zh. Genet. i Selek., 19:6 (2015), 738–744 (in Russian)

[28] A. F. Villaverde, A. Barreiroc, “Identifiability of large nonlinear biochemical networks”, MATCH Commun. Math. Comput. Chem., 76 (2016), 259–296 | MR

[29] A. Saltelli, K. Chan, M. Scott, Sensitivity Analysis, Wiley Series in Probability and Statistics, John Wiley Sons, New York, 2000 | MR

[30] A. Raue, C. Kreutz, T. Maiwald, “Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood”, Bioinformatics, 25:15 (2009), 1923–1929 | DOI

[31] D. G. Cacuci, Sensitivity and uncertainty analysis: theory, v. 1, Chapman Hall/CRC, New York, 2003 | MR

[32] K. Zh. Yao, B. M. Shaw, B. Kou, K. B. McAuley, D. W. Bacon, “Modeling ethylene/butene copolymerization with multi-site catalysts: parameter estimability and experimental design”, Polymer React. Eng., 11:3 (2003), 563–588 | DOI

[33] V. Latyshenko, O. Krivorotko, S. Kabanikhin, Sh. Zhang, V. Kashtanova, D. Yermolenko, “Identifiability analysis of inverse problems in biology”, Proc. 2 Intern. Conf. Comput. Modeling, Simulation and Appl. Mathematics, CMSAM (Beijing, China, October 22-23, 2017), DEStech, Lancaster, 2017, 567–571

[34] T. Quaiser, M. Mönnigmann, “Systematic identifiability testing for unambiguous mechanistic modeling application to JAK-STAT, MAP kinase, and NF-kB signaling pathway models”, BMC Syst. Biol., 3 (2009), 50–71 | DOI

[35] M. Rodriguez-Fernandez, J. A. Egea, J. R. Banga, BMC Bioinformatics, 7 (2006), 483–500 | DOI

[36] N. Metropolis, S. Ulam, “The Monte Carlo method”, J. Amer. Stat. Assoc., 44 (1949), 335–341 | DOI | MR | Zbl

[37] H. T. Banks, S. I. Kabanikhin, O. I. Krivorotko, D. V. Yermolenko, “A numerical algorithm for constructing an individual mathematical model of HIV dynamics at cellular level”, J. Inverse Ill-Posed Probl., 26:6 (2018), 859–873 | DOI | MR | Zbl

[38] S. I. Kabanikhin, O. I. Krivorotko, D. V. Ermolenko, V. N. Kashtanova, V. A. Latyshenko, “Inverse problems of immunology and epidemiolohy”, Eurasian J. Math. Comp. Appl., 5:2 (2017), 14–35 | MR

[39] D. S. Callaway, A. S. Perelson, “HIV-1 infection and low steady state viral loads”, Bull. Math. Biol., 64 (2001), 29–64 | DOI

[40] H. T. Banks, Sh. Hu, W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty, Chapman and Hall/CRC, New York, 2014 | MR