A 3D reconstruction algorithm of a surface of revolution from its projection
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 84-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the problem of reconstruction of a surface of revolution from the boundary curves of its projection. Two approaches to this problem are suggested. The first approach reduces the problem to a system of functional-differential equations. We describe in detail how to obtain this system. The second approach bases on geometrical considerations and uses a piecewise-conic approximation of the desired surface. The second method rests on the auxiliary statement on the 3D reconstruction of a straight circular cone. We give a formula for calculating the base radius of the cone. In the general case, the surface of revolution is approximated by the surface of rotation of some polygonal curve.
Mots-clés : 3D reconstruction
Keywords: surface of revolution, differential equations, central projection.
@article{SJIM_2020_23_1_a7,
     author = {V. A. Klyachin and E. G. Grigorieva},
     title = {A {3D} reconstruction algorithm of a surface of revolution from its projection},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {84--92},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a7/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - E. G. Grigorieva
TI  - A 3D reconstruction algorithm of a surface of revolution from its projection
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 84
EP  - 92
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a7/
LA  - ru
ID  - SJIM_2020_23_1_a7
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A E. G. Grigorieva
%T A 3D reconstruction algorithm of a surface of revolution from its projection
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 84-92
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a7/
%G ru
%F SJIM_2020_23_1_a7
V. A. Klyachin; E. G. Grigorieva. A 3D reconstruction algorithm of a surface of revolution from its projection. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 84-92. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a7/

[1] A. P. Mikhailov, A. G. Chibunichev, Lectures on Photogrammetry, Rakurs, M., 2013 (in Russian)

[2] A. N. Lobanov, N. T. Kuprina, Z. N. Chumachenko, Photogrammetry, Nedra, M., 1984 (in Russian)

[3] V. A. Klyachin, E. G. Grigorieva, “An algorithm for automatic parameter identification of a camera orientation in space by using the characteristic elements of a snapshot”, Tendentsii Razvitiya Nauki i Obrazovaniya, 45:6 (2018), 10–20 (in Russian)

[4] E. G. Grigorieva, V. A. Klyachin, “Mathematical model of 3D maps and design of information system for its control”, J. Comput. Eng. Math., 2016, no. 4, 51–58 | DOI

[5] A. A. Loktev, Yu. A. Bykov, N. I. Kovalenko, “Application of a method of analysis of an image washout for determination of outer defects of a railway track”, Nauka i Tekhnika Transporta, 2016, no. 1, 69–75 (in Russian)

[6] A. A. Loktev, D. A. Loktev, “A method of determining the distance to the object by analyzing its blur”, Vestnik MGSU, 10:6 (2015), 140–151 (in Russian)

[7] A. A. Loktev, V. F. Bakhtin, I. Yu. Chernikov, D. A. Loktev, “A method of determining external defects of a structure by analyzing a series of its images in the monitoring system”, Vestnik MGSU, 10:3 (2015), 7–16 (in Russian)

[8] D. A. Loktev, A. A. Loktev, “A distance determination towards an object by a series of its images”, Proceedings of the All-Russian Scientific Conference "Mathematics, Informatics, Natural Science In Economy And Society (MIESECO-2015)", Publ. MFYuA, M., 2015, 52–57 (in Russian)

[9] D. A. Loktev, “Determination of geometrics of an object by means of analysis of a series of its images”, T-Comm: Telekommunikatsii i Transport, 9:5 (2015), 47–53 (in Russian)

[10] A. A. Loktev, D. A. Loktev, “Evaluation of measurements of the distance to an object in the study of its graphic image”, Vestnik MGSU, 10:10 (2015), 54–65 (in Russian)

[11] D. A. Loktev, “Determination of the parameters of an object from a series of its images in a complex monitoring system”, Put' i Putevoe Khozyaistvo, 2015, no. 2, 31–33 (in Russian) | MR

[12] O. V. Nedz'ved', S. V. Ablameiko, A. M. Belotserkovskii, “Finding the volumetric characteristics of dynamical medical objects”, Iskusstv. Intellekt, 2010, no. 4, 262–270 (in Russian)

[13] S. Mirov, A. Ivanov, T. Ogurtsova, E. Dyukendzhiev, “Application of remote sensing data in podometry”, The 4th International Conference of Users of TsFS PHOTOMOD, Abstracts, Rakurs, Minsk, 2004, 25–28

[14] A. S. Jackson et al., “Large pose 3D face reconstruction from a single image via direct volumetric CNN regression”, IEEE Internat. Conf. Computer Vision (ICCV), IEEE, 2017, 1031–1039

[15] Z. Ferková, P. Urbanová, D. Cerny, M. Zuzi, P. Matula, “Age and gender-based human face reconstruction from single frontal image”, Multimedia Tools Appl., 2018, 1–26 | DOI

[16] G. Pang, R. Qiu, J. Huang, S. You, U. Neumann, “Automatic 3D industrial point cloud modeling and recognition”, 14 IAPR Internat. Conf. Machine Vision Appl. (MVA), IEEE, 2015, 22–25 | DOI

[17] S. Kamyab, A. Ghodsi, Z. Azimifar, Deep Structure for end-to-end inverse rendering, 2017, arXiv: 1708.08998 [cs.CV]

[18] S. Kamyab, A. Zohreh, End-to-end 3D shape inverse rendering of different classes of objects from a single input image, 2017, arXiv: 1711.05858 [cs.CV]

[19] O. S. Levina, V. V. Voronin, M. M. Pis'menskova, N. V. Gapon, A. V. Kurkina, “Analiz osnovnykh etapov metoda rekonstruktsii trekhmernykh modelei poverkhnostei ob"ektov [Analysis of the main stages of the method for reconstruction of 3D surface models of objects]”, Inform. Tekhnologii. Radioelektronika. Telekommunikatsii, 6:2 (2016), 25–32 (in Russian)

[20] T. S. Tagirov, “Algorithmic methods for solution of the object reconstruction problems in 2D and 3D domains”, Sovrem. Problemy Nauki i Obrazovaniya, 2014, no. 2, 661 (in Russian)

[21] P. A. Penczek, “Fundamentals of three-dimensional reconstruction from projections”, Meth. Enzymol., 482:1 (2010), 33 | DOI

[22] J. Molnar, R. Frohlich, D. Chetverikov, Z. Kato, “3D reconstruction of planar patches seen by omnidirectional cameras”, Internat. Conf. Digital Image Computing: Techniques and Applications (DICTA), IEEE, 2014, 1–8