On the boundary value problem for a model of nonisothermal flows of a non-Newtonian fluid
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 58-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is a stationary model describing non-Newtonian fluid flows with the viscosity dependent on the strain rate and the heat transfer in a bounded 3D domain. This model is a strongly nonlinear system of coupled partial differential equations for the velocity field, temperature, and pressure. On the boundary of the flow domain, the system is supplemented with a no-slip condition and a linear Robin-type boundary condition for the temperature. An operator formulation of this boundary-value problem is proposed. Using the properties of $d$-monotone operators and the Leray–Schauder Fixed Point Theorem, we prove the existence of weak solutions under natural conditions for the data of the model. It is also shown that the solutions set is bounded and closed.
Keywords: non-Newtonian fluid, heat transfer, $d$-monotone operator, fixed point, weak solution.
@article{SJIM_2020_23_1_a5,
     author = {A. A. Domnich and M. A. Artemov and O. Yu. Shishkina},
     title = {On the boundary value problem for a model of nonisothermal flows of a {non-Newtonian} fluid},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {58--69},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a5/}
}
TY  - JOUR
AU  - A. A. Domnich
AU  - M. A. Artemov
AU  - O. Yu. Shishkina
TI  - On the boundary value problem for a model of nonisothermal flows of a non-Newtonian fluid
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 58
EP  - 69
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a5/
LA  - ru
ID  - SJIM_2020_23_1_a5
ER  - 
%0 Journal Article
%A A. A. Domnich
%A M. A. Artemov
%A O. Yu. Shishkina
%T On the boundary value problem for a model of nonisothermal flows of a non-Newtonian fluid
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 58-69
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a5/
%G ru
%F SJIM_2020_23_1_a5
A. A. Domnich; M. A. Artemov; O. Yu. Shishkina. On the boundary value problem for a model of nonisothermal flows of a non-Newtonian fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a5/

[1] V. G. Litvinov, Motion of nonlinear-viscous fluid, Nauka, M., 1982 (in Russian) | MR

[2] M. Yu. Kuz'min, “About a mathematical model of motion of a nonlinear-viscous fluid with a slipping condition at the boundary”, Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 5, 53–62 (in Russian) | Zbl

[3] E. S. Baranovskii, M. A. Artemov, “Existence of optimal control for a nonlinear-viscous fluid model”, Int. J. Differ. Equ., 2016 (2016), 9428128 | DOI | MR | Zbl

[4] A. A. Artemov, A. V. Skobaneva, “On optimal control in a model of rigid-viscoplastic media with dirichlet boundary conditions”, Sibir. Elektron. Mat. Izv., 14 (2017), 1463–1471 (in Russian) | DOI | MR | Zbl

[5] E. S. Baranovskii, “On flows of Bingham-type fluids with threshold slippage”, Adv. Math. Phys., 2017 (2017), 7548328 | DOI | MR | Zbl

[6] S. G. Krein, Ch. T. Kha, “The flow problem of a nonuniformly heated viscous liquid”, Zh. Vychisl. Mat. Mat. Fiz., 29:8 (1989), 1153–1158 (in Russian) | Zbl

[7] G. V. Alekseev, “Solvability of stationary boundary control problems for equations of thermal convection”, Siberian Math. J., 39:5 (1998), 844–858 | DOI | MR | Zbl

[8] A. V. Fursikov, Yu. S. Emanuilov, “Exact controllability of Navier-Stokes and Boussinesq equations”, Uspekhi Mat. Nauk, 54:3 (1999), 93–146 (in Russian) | DOI | MR | Zbl

[9] G. V. Alekseev, “Solvability of inverse extremal problems for stationary heat and mass transfer equations”, Siberian Math. J., 42:5 (2001), 811–827 | DOI | MR | Zbl

[10] G. V. Alekseev, A. M. Khludnev, “Stability of solutions to extremal boundary control problems for stationary equations of thermal convection”, J. Appl. Indust. Math., 5:1 (2010), 1–13 | DOI | MR | Zbl

[11] E. Mallea-Zepeda, E. Lenes, E. Valero, “Boundary control problem for heat convection equations with slip boundary condition”, Math. Probl. Eng., 2018 (2018), 7959761 | DOI | MR | Zbl

[12] Z. Li, “Global well-posedness of the 2D Euler-Boussinesq system with stratification effects”, Math. Meth. Appl. Sci., 40:14 (2017), 5212–5221 | DOI | MR | Zbl

[13] M. A. Artemov, E. S. Baranovskii, “Solvability of the Boussinesq approximation for water polymer solutions”, Mathematics, 7:7 (2019), 611 | DOI

[14] G. Isac, Leray-Schauder Type Alternatives, Complementarity Problems and Variational Inequalities, Springer Science+Business Media, N.Y., 2006 | MR | Zbl

[15] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Gostekhizdat, M., 1956 (in Russian)

[16] Kh. Gaevskii, K. Greger, K. Zakharias, Nonlinear Operator Equations and Operator Differential Equations, Mir, M., 1978 (in Russian)

[17] J. Necas, Direct Methods in the Theory of Elliptic Equations, Springer-Verl., Berlin, 2012 | MR | Zbl