Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_1_a5, author = {A. A. Domnich and M. A. Artemov and O. Yu. Shishkina}, title = {On the boundary value problem for a model of nonisothermal flows of a {non-Newtonian} fluid}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {58--69}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a5/} }
TY - JOUR AU - A. A. Domnich AU - M. A. Artemov AU - O. Yu. Shishkina TI - On the boundary value problem for a model of nonisothermal flows of a non-Newtonian fluid JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 58 EP - 69 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a5/ LA - ru ID - SJIM_2020_23_1_a5 ER -
%0 Journal Article %A A. A. Domnich %A M. A. Artemov %A O. Yu. Shishkina %T On the boundary value problem for a model of nonisothermal flows of a non-Newtonian fluid %J Sibirskij žurnal industrialʹnoj matematiki %D 2020 %P 58-69 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a5/ %G ru %F SJIM_2020_23_1_a5
A. A. Domnich; M. A. Artemov; O. Yu. Shishkina. On the boundary value problem for a model of nonisothermal flows of a non-Newtonian fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a5/
[1] V. G. Litvinov, Motion of nonlinear-viscous fluid, Nauka, M., 1982 (in Russian) | MR
[2] M. Yu. Kuz'min, “About a mathematical model of motion of a nonlinear-viscous fluid with a slipping condition at the boundary”, Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 5, 53–62 (in Russian) | Zbl
[3] E. S. Baranovskii, M. A. Artemov, “Existence of optimal control for a nonlinear-viscous fluid model”, Int. J. Differ. Equ., 2016 (2016), 9428128 | DOI | MR | Zbl
[4] A. A. Artemov, A. V. Skobaneva, “On optimal control in a model of rigid-viscoplastic media with dirichlet boundary conditions”, Sibir. Elektron. Mat. Izv., 14 (2017), 1463–1471 (in Russian) | DOI | MR | Zbl
[5] E. S. Baranovskii, “On flows of Bingham-type fluids with threshold slippage”, Adv. Math. Phys., 2017 (2017), 7548328 | DOI | MR | Zbl
[6] S. G. Krein, Ch. T. Kha, “The flow problem of a nonuniformly heated viscous liquid”, Zh. Vychisl. Mat. Mat. Fiz., 29:8 (1989), 1153–1158 (in Russian) | Zbl
[7] G. V. Alekseev, “Solvability of stationary boundary control problems for equations of thermal convection”, Siberian Math. J., 39:5 (1998), 844–858 | DOI | MR | Zbl
[8] A. V. Fursikov, Yu. S. Emanuilov, “Exact controllability of Navier-Stokes and Boussinesq equations”, Uspekhi Mat. Nauk, 54:3 (1999), 93–146 (in Russian) | DOI | MR | Zbl
[9] G. V. Alekseev, “Solvability of inverse extremal problems for stationary heat and mass transfer equations”, Siberian Math. J., 42:5 (2001), 811–827 | DOI | MR | Zbl
[10] G. V. Alekseev, A. M. Khludnev, “Stability of solutions to extremal boundary control problems for stationary equations of thermal convection”, J. Appl. Indust. Math., 5:1 (2010), 1–13 | DOI | MR | Zbl
[11] E. Mallea-Zepeda, E. Lenes, E. Valero, “Boundary control problem for heat convection equations with slip boundary condition”, Math. Probl. Eng., 2018 (2018), 7959761 | DOI | MR | Zbl
[12] Z. Li, “Global well-posedness of the 2D Euler-Boussinesq system with stratification effects”, Math. Meth. Appl. Sci., 40:14 (2017), 5212–5221 | DOI | MR | Zbl
[13] M. A. Artemov, E. S. Baranovskii, “Solvability of the Boussinesq approximation for water polymer solutions”, Mathematics, 7:7 (2019), 611 | DOI
[14] G. Isac, Leray-Schauder Type Alternatives, Complementarity Problems and Variational Inequalities, Springer Science+Business Media, N.Y., 2006 | MR | Zbl
[15] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Gostekhizdat, M., 1956 (in Russian)
[16] Kh. Gaevskii, K. Greger, K. Zakharias, Nonlinear Operator Equations and Operator Differential Equations, Mir, M., 1978 (in Russian)
[17] J. Necas, Direct Methods in the Theory of Elliptic Equations, Springer-Verl., Berlin, 2012 | MR | Zbl