@article{SJIM_2020_23_1_a3,
author = {Z. R. Bozorov},
title = {The problem of determining the two-dimensional kernel of a viscoelasticity equation},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {28--45},
year = {2020},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a3/}
}
Z. R. Bozorov. The problem of determining the two-dimensional kernel of a viscoelasticity equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 28-45. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a3/
[1] L. V. Ovsyannikov, “Nelineinaya zadacha Koshi v shkalakh banakhovykh prostranstv [The nonlinear Cauchy problem in scales of Banach spaces]”, Dokl. Akad. Nauk SSSR, 200:4 (1971), 789–792 (in Russian) | Zbl
[2] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute Math. Sci., N.Y., 1974 | MR | Zbl
[3] V. G. Romanov, “Local solvability of some multidimensional inverse problems for equations of hyperbolic type”, Differential Equations, 25:2 (1989), 203–209 | MR | Zbl
[4] V. G. Romanov, “Problem of determining the speed of sound”, Siberian Math. J., 30:4 (1989), 598–605 | DOI | MR | Zbl
[5] V. G. Romanov, “On the solvability of inverse problems for hyperbolic equations in a class of functions analytic in some of the variables”, Sov. Math. Dokl., 39:1 (1989), 160–164 | MR | Zbl
[6] D. K. Durdiev, “A multidimensional inverse problem for an equation with memory”, Siberian Math. J., 35:3 (1994), 514–521 | DOI | MR | Zbl
[7] D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zh. Mat. Fiz. Anal. Geom., 3:4 (2007), 411–423 | MR | Zbl
[8] D. K. Durdiev, Zh. Sh. Safarov, “Lokal'naya razreshimost' zadachi opredeleniya prostranstvennoi chasti mnogomernogo yadra v integrodifferentsial'nom uravnenii giperbolicheskogo tipa [Local solvability of a problem of determination of a spatial part of the multidimensional kernel of an integro-differential equation of hyperbolic type]”, Vestnik Samarsk. Gos. Univ. Ser. Fiz. Mat. Nauki, 29:4 (2012), 37–47 (in Russian) | DOI
[9] A. L. Karchevskii, A. G. Fat'yanova, “Numerical solution of an inverse problem for an elasticity system with delay for a vertically inhomogeneous medium”, Sibir. Zh. Vychisl. Mat., 4:3 (2001), 259–268 (in Russian) | MR
[10] V. G. Romanov, “A two-dimensional inverse problem for a viscoelasticity equation”, Siberian Math. J., 53:6 (2012), 1128–1138 | DOI | MR | Zbl
[11] D. K. Durdiev, Zh. D. Totieva, “A problem of finding a one-dimensional kernel of a viscoelasticity equation”, Sibir. Zh. Industr. Mat., 16:2 (2013), 72–82 (in Russian) | MR | Zbl
[12] R. Courant, Partial Differential Equations, Wiley Sons, N.Y., 1962 | MR | Zbl
[13] V. G. Romanov, Stability in Inverse Problems, Nauchn. Mir, M., 2005 (in Russian)