The problem of determining the two-dimensional kernel of a viscoelasticity equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 28-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the integro-differential equation of viscoelasticity. The direct problem is to determine the $z$-component of the displacement vector from the initial boundary value problem for the equation. We assume that the kernel of the integral term of the equation depends on time and a spatial variable $x$. For determination of the kernel the additional condition is posed on the solution of the direct problem for $y=0$. The inverse problem is replaced by an equivalent system of integro-differential equations for the unknown functions. To this system, we apply the method of scales of Banach spaces of analytic functions. The local unique solvability of the inverse problem is proved in the class of functions analytic in $x$ and continuous in $t$.
Keywords: integro-differential equation, inverse problem, uniqueness, analytic function, viscoelasticity.
@article{SJIM_2020_23_1_a3,
     author = {Z. R. Bozorov},
     title = {The problem of determining the two-dimensional kernel of a viscoelasticity equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {28--45},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a3/}
}
TY  - JOUR
AU  - Z. R. Bozorov
TI  - The problem of determining the two-dimensional kernel of a viscoelasticity equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 28
EP  - 45
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a3/
LA  - ru
ID  - SJIM_2020_23_1_a3
ER  - 
%0 Journal Article
%A Z. R. Bozorov
%T The problem of determining the two-dimensional kernel of a viscoelasticity equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 28-45
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a3/
%G ru
%F SJIM_2020_23_1_a3
Z. R. Bozorov. The problem of determining the two-dimensional kernel of a viscoelasticity equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 28-45. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a3/

[1] L. V. Ovsyannikov, “Nelineinaya zadacha Koshi v shkalakh banakhovykh prostranstv [The nonlinear Cauchy problem in scales of Banach spaces]”, Dokl. Akad. Nauk SSSR, 200:4 (1971), 789–792 (in Russian) | Zbl

[2] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute Math. Sci., N.Y., 1974 | MR | Zbl

[3] V. G. Romanov, “Local solvability of some multidimensional inverse problems for equations of hyperbolic type”, Differential Equations, 25:2 (1989), 203–209 | MR | Zbl

[4] V. G. Romanov, “Problem of determining the speed of sound”, Siberian Math. J., 30:4 (1989), 598–605 | DOI | MR | Zbl

[5] V. G. Romanov, “On the solvability of inverse problems for hyperbolic equations in a class of functions analytic in some of the variables”, Sov. Math. Dokl., 39:1 (1989), 160–164 | MR | Zbl

[6] D. K. Durdiev, “A multidimensional inverse problem for an equation with memory”, Siberian Math. J., 35:3 (1994), 514–521 | DOI | MR | Zbl

[7] D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zh. Mat. Fiz. Anal. Geom., 3:4 (2007), 411–423 | MR | Zbl

[8] D. K. Durdiev, Zh. Sh. Safarov, “Lokal'naya razreshimost' zadachi opredeleniya prostranstvennoi chasti mnogomernogo yadra v integrodifferentsial'nom uravnenii giperbolicheskogo tipa [Local solvability of a problem of determination of a spatial part of the multidimensional kernel of an integro-differential equation of hyperbolic type]”, Vestnik Samarsk. Gos. Univ. Ser. Fiz. Mat. Nauki, 29:4 (2012), 37–47 (in Russian) | DOI

[9] A. L. Karchevskii, A. G. Fat'yanova, “Numerical solution of an inverse problem for an elasticity system with delay for a vertically inhomogeneous medium”, Sibir. Zh. Vychisl. Mat., 4:3 (2001), 259–268 (in Russian) | MR

[10] V. G. Romanov, “A two-dimensional inverse problem for a viscoelasticity equation”, Siberian Math. J., 53:6 (2012), 1128–1138 | DOI | MR | Zbl

[11] D. K. Durdiev, Zh. D. Totieva, “A problem of finding a one-dimensional kernel of a viscoelasticity equation”, Sibir. Zh. Industr. Mat., 16:2 (2013), 72–82 (in Russian) | MR | Zbl

[12] R. Courant, Partial Differential Equations, Wiley Sons, N.Y., 1962 | MR | Zbl

[13] V. G. Romanov, Stability in Inverse Problems, Nauchn. Mir, M., 2005 (in Russian)