Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_1_a11, author = {V. B. Myntiuk}, title = {Postbuckling of a uniformly compressed simply supported plate with free in-plane translating edges}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {143--154}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a11/} }
TY - JOUR AU - V. B. Myntiuk TI - Postbuckling of a uniformly compressed simply supported plate with free in-plane translating edges JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 143 EP - 154 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a11/ LA - ru ID - SJIM_2020_23_1_a11 ER -
%0 Journal Article %A V. B. Myntiuk %T Postbuckling of a uniformly compressed simply supported plate with free in-plane translating edges %J Sibirskij žurnal industrialʹnoj matematiki %D 2020 %P 143-154 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a11/ %G ru %F SJIM_2020_23_1_a11
V. B. Myntiuk. Postbuckling of a uniformly compressed simply supported plate with free in-plane translating edges. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 143-154. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a11/
[1] Föppl A., Vorlesungen über Technische Mechanik, v. 5, B. G. Teubner, Leipzig, 1907 | Zbl
[2] T. Von Kármán, “Festigkeitsproblem im Maschinenbau”, Encyk. D. Math. Wiss, 4 (1910), 311–385
[3] P. G. Ciarlet, Plates and Junctions in Elastic Multi-Structures, Springer-Verl, Paris–Masson–Berlin, 1990 | MR | Zbl
[4] C. Y. Chia, Nonlinear Analysis of Plates, Mcgraw-Hill, N.Y., 1980
[5] K. M. Liew, J. Wang, M. J. Tan, S. Rajendran, “Postbuckling analysis of laminated composite plates”, Comput. Methods Appl. Mech. Eng., 195 (2006), 551–570 | DOI | Zbl
[6] O. O. Ochoa, J. N. Reddy, Finite Element Analysis of Composite Laminates, Kluwer Acad. Publ., Dordrecht, 1992
[7] L. C. Shiau, T. Y. Wu, “Application of the finite element method to postbuckling analysis of laminated plates”, AIAA J., 33:12 (1995), 2379–2385 | DOI | Zbl
[8] T. Le-Manh, J. Lee, “Postbuckling of laminated composite plates using NURBS-based isogeometric analysis”, Compos. Struct., 109:1 (2014), 286–293 | DOI
[9] S. A. Khalilov, V. B. Mintyuk, “Postbuckling analysis of flexible elastic frames”, J. Appl. Indust. Math., 12:1 (2018), 28–39 | DOI | MR
[10] W. Z. Chien, “The intrinsic theory of thin shells and plates. I. General theory”, Quart. Appl. Math., 1:4 (1944), 297–327 | DOI | MR
[11] V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity, Graylock Press, Rochester, N.Y., 1953 | MR | Zbl
[12] Kh. M. Mushtari, K. Z. Galimov, Nonlinear Theory of Elastic Shells, Tatknigoizdat, Kazan, 1957 (in Russian)
[13] W. T. Koiter, “A consistent first approximation in the general theory of thin elastic shells”, Proc. 1 IUTAM Symposium on Shell Theory (Delft, 1959), Amsterdam, 1959, 12–33 | MR
[14] Sanders J. L. Jr., “Nonlinear theories for thin shells”, Quart. Appl. Math., 21:1 (1961), 21–36 | DOI | MR
[15] V. V. Novozhilov, K. F. Chernykh, “On the “true” measures of stresses and deformations in nonlinear mechanics of a deformable body”, Izv. Vyssh. Uchebn. Zaved. Mekh. Tverd. Tela, 1987, no. 4, 191–197
[16] H. Bufler, “The Biot stresses in nonlinear elasticity and the associated generalized variational principles”, Ing. Arch., 55 (1985), 450–462 | DOI | Zbl
[17] A. H. Nayfeh, P. F. Pai, Linear and Nonlinear Structural Mechanics, Wiley, N.Y., 2004 | MR | Zbl
[18] N. A. Alumáe, “On the Presentation of Fundamental Correlations of the Nonlinear Theory of Shells”, Prikl. Mat. Mekh., 20:1 (1956), 136–139 | MR
[19] S. N. Atluri, “Alternate stress and conjugate strain measures and mixed variational formulations involving rigid rotations for computational analyses of finitely deformed solids with application to plates and shells”, Comput. Structures, 18:1 (1983), 93–116 | DOI | MR
[20] W. Pietraszkiewicz, “Geometrically nonlinear theories of thin elastic shells”, Adv. Mech., 12:1 (1989), 51–130 | MR
[21] V. B. Myntiuk, “Biot stress and strain in thin-plate theory for large deformations”, J. Appl. Indust. Math., 12:3 (2018), 501–509 | DOI | MR | Zbl
[22] P. F. Pai, A. H. Nayfeh, “A new method for the modeling of geometric nonlinearities in structures”, Comput. Structures, 53:4 (1994), 877–895 | DOI | Zbl