A multidimensional computational model of filtration gas combustion
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 126-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a two-temperature multidimensional computational model of filtration gas combustion. The model bases on the approximation of a system of conservation laws by the mixed finite element method in spatial variables and the splitting method in time. Particular attention is paid to improving the performance of the computational model by parallel computation.
Mots-clés : filtration combustion
Keywords: conservation law, heat flow, relative enthalpy, approximation, mixed finite element method, splitting method, parallelization.
@article{SJIM_2020_23_1_a10,
     author = {Yu. M. Laevsky and T. A. Nosova},
     title = {A multidimensional computational model of filtration gas combustion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {126--142},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a10/}
}
TY  - JOUR
AU  - Yu. M. Laevsky
AU  - T. A. Nosova
TI  - A multidimensional computational model of filtration gas combustion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 126
EP  - 142
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a10/
LA  - ru
ID  - SJIM_2020_23_1_a10
ER  - 
%0 Journal Article
%A Yu. M. Laevsky
%A T. A. Nosova
%T A multidimensional computational model of filtration gas combustion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 126-142
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a10/
%G ru
%F SJIM_2020_23_1_a10
Yu. M. Laevsky; T. A. Nosova. A multidimensional computational model of filtration gas combustion. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 126-142. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a10/

[1] Yu. M. Laevsky, T. A. Nosova, “Computational models of filtration gas combustion”, Russian J. Numer. Anal. Math. Modelling, 32:2 (2017), 115–125 | DOI | MR | Zbl

[2] T. A. Nosova, Yu. M. Laevsky, “Numerical simulation of filtration gas combustion”, AIP Conf. Proceed., 1906 (2017), 100003 | DOI | MR

[3] V. S. Babkin, Yu. M. Laevskii, “Seepage gas combustion”, Combustion, Explosion and Shock Waves, 23:5 (1987), 531–547 | DOI

[4] V. S. Babkin, A. A. Korzhavin, Yu. M. Laevsky, “On plurality of regimes of filtration gas combustion”, Dokl. Phys., 56:2 (2011), 122–125 | DOI

[5] V. S. Babkin, V. I. Drobyshevich, Yu. M. Laevskii, S. I. Potytnyakov, “On mechanism of combustion waves propagation in a porous medium under gas filtration”, Dokl. Akad. Nauk SSSR, 265:5 (1982), 1157–1161

[6] V. S. Babkin, V. I. Drobyshevich, Yu. M. Laevskii, S. I. Potytnyakov, “Filtration combustion of gases”, Combustion, Explosion and Shock Waves, 19:2 (1983), 147–155 | DOI

[7] Yu. M. Laevskii, V. S. Babkin, V. I. Drobyshevich, S. I. Potytnyakov, “Theory of filtrational combustion of gases”, Combustion, Explosion and Shock Waves, 20:6 (1984), 591–600 | DOI

[8] Yu. M. Laevskii, V. S. Babkin, “Filtration combustion of gases”, Heat Waves Propagation in Heterogeneous Media, Nauka, Novosibirsk, 1988, 108–145

[9] Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, Mathematical Theory of Combustion and Explosions, Consultants Bureau, N.Y., 1985 | MR

[10] K. V. Dobrego, S. A. Zhdanok, Physics of Filtration Combustion of Gases, Inst. Teplo i Massoobmena im. A.V. Lykova NANB, Minsk, 2002 (in Russian)

[11] V. I. Drobyshevich, “Mathematical modelling of hybrid combustion waves”, Russian J. Numer. Anal. Math. Modelling, 19:6 (2004), 495–505 | DOI | MR | Zbl

[12] N. A. Kakutkina, A. Korzhavin, I. G. Namyatov, A. D. Rychkov, “Flame propagation through the header of an in-line flame arrester”, Combustion, Explosion and Shock Waves, 43:4 (2007), 391–404 | DOI

[13] Yu. M. Laevskii, L. V. Yausheva, “Numerical modeling of filtration gas combustion by using of two-level semi-implicit difference schemes”, Vychisl. Tekhnol., 12:2 (2007), 90–103 (in Russian)

[14] V. I. Drobyshevich, “Numerical study of combustion in a cylindrical porous burner”, Combustion, Explosion and Shock Waves, 44:3 (2008), 262–265 | DOI

[15] Yu. M. Laevsky, L. V. Yausheva, “Simulation of filtrational gas combustion processes in nonhomogeneous porous media”, Numerical Analysis and Applications, 2:2 (2009), 140–153 | DOI

[16] N. A. Kakutkina, A. Korzhavin, E. V. Manzhos, A. D. Rychkov, “Ignition of filtration gas combustion waves by the flame of the filtered gas”, Combustion, Explosion and Shock Waves, 50:3 (2014), 282–289 | DOI

[17] T. A. Kandryukova, Yu. M. Laevskii, “Simulating the filtration combustion of gases on multi-core computers”, J. Appl. Indust. Mathematics, 8:2 (2014), 218–226 | DOI | MR | Zbl

[18] T. A. Kandryukova, Yu. M. Laevsky, “Some approaches to modeling the filtration combustion of gases”, Sibir. Zh. Industr. Mat., 18:4 (2015), 49–60 | MR | Zbl

[19] Liu Yi, Fan Aiwu, Yao Hong, “Liu Wei Numerical investigation of filtration gas combustion in a mesoscale combustor filled with inert fibrous porous medium”, Inter. J. Heat Mass Transfer, 91 (2015), 18–26 | DOI

[20] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verl, N.Y., 1991 | MR | Zbl

[21] A. A. Samarskii, Introduction to Difference Schemes Theory, Nauka, M., 1971 (in Russian) | MR

[22] P. A. Raviart, J. M. Thomas, “A mixed finite element method for 2-nd order elliptic problems”, Proceedings of the Conference “Mathematical Aspects of Finite Element Methods” (Rome, December 10–12, 1975), Lecture Notes in Mathematics, 606, Springer-Verl., Heidelberg, 1977, 292–315 | DOI | MR

[23] G. I. Marchuk, V. I. Agoshkov, Introduction to Projection-Grid Methods, Nauka, M., 1981 (in Russian) | MR