A uniqueness theorem for an inverse kinematic seismic problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 5-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove some uniqueness theorem of a solution to an inverse kinematic seismic problem by using the Taylor series expansion.
Keywords: inverse kinematic seismic problem, Taylor series, recurrent formula.
@article{SJIM_2020_23_1_a0,
     author = {Yu. E. Anikonov},
     title = {A uniqueness theorem for an inverse kinematic seismic problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a0/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
TI  - A uniqueness theorem for an inverse kinematic seismic problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 5
EP  - 10
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a0/
LA  - ru
ID  - SJIM_2020_23_1_a0
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%T A uniqueness theorem for an inverse kinematic seismic problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 5-10
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a0/
%G ru
%F SJIM_2020_23_1_a0
Yu. E. Anikonov. A uniqueness theorem for an inverse kinematic seismic problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 5-10. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a0/

[1] Yu. E. Anikonov, N. B. Ayupova, M. V. Neshchadim, “The ray method and questions of identification of equations of elasticity theory”, Sibir. Zh. Chist. i Prikl. Mat., 18:1 (2018), 11–28 (in Russian) | MR

[2] Yu. E. Anikonov, N. B. Ayupova, “Ray decomposition and identities for second-order equations with application to inverse problems”, Sibir. Zh. Chist. i Prikl. Mat., 17:1 (2017), 3–17 (in Russian)

[3] Yu. E. Anikonov, M. V. Neshchadim, “Representations for the solutions and coefficients of hyperbolic and elliptic equations”, Sibir. Elektr. Izv., 8 (2011), 51–73 (in Russian)

[4] Yu. E. Anikonov, “Differential identities for partial differential equations”, J. Appl. Indust. Math., 17:2 (2014), 11–17

[5] Yu. E. Anikonov, M. V. Neshchadim, “Representations for the solutions and coefficients of evolution equations”, J. Appl. Indust. Math., 7:3 (2013), 326–334 | DOI | MR | Zbl

[6] Yu. E. Anikonov, M. V. Neshchadim, “On analytical methods in the theory of inverse problems for Hyperbolic Equations”, I. J. Appl. Indust. Math., 5:4 (2011), 506–518 | DOI | MR | MR | Zbl

[7] M. M. Lavrent'ev, V. G. Romanov, S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, Amer. Math. Soc., Providence, 1986 | MR | MR | Zbl

[8] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987 | MR

[9] Yu. E. Anikonov, Some Methods of Studying the Multidimensional Inverse Problems for Differential Equations, VSP, Utrecht, 1995 | MR

[10] Yu. E. Anikonov, L. N. Pestov, Formulas in Linear and Nonlinear Problems of Tomography, Publ. Novosib. Gos. Univ., Novosibirsk, 1990 (in Russian)

[11] M. A. Lavrent'ev, B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models, Nauka, M., 1977 (in Russian) | MR