New solutions of dynamic equations of ideal plasticity
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 89-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Point symmetries allowed by plasticity equations in the dynamical case are used to construct solutions for the dynamical equations of ideal plasticity. These symmetries make it possible to convert the exact solutions of stationary dynamical equations to nonstationary solutions. The so-constructed solutions include arbitrary functions of time. The solutions allow us to describe the plastic flow between the plates changing their shape under the action of dynamical loads. Some new spatial self-similar solution is also presented.
Keywords: ideal plasticity, symmetry.
Mots-clés : exact solution
@article{SJIM_2019_22_4_a8,
     author = {S. I. Senashov and I. L. Savostyanova},
     title = {New solutions of dynamic equations of ideal plasticity},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a8/}
}
TY  - JOUR
AU  - S. I. Senashov
AU  - I. L. Savostyanova
TI  - New solutions of dynamic equations of ideal plasticity
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 89
EP  - 94
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a8/
LA  - ru
ID  - SJIM_2019_22_4_a8
ER  - 
%0 Journal Article
%A S. I. Senashov
%A I. L. Savostyanova
%T New solutions of dynamic equations of ideal plasticity
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 89-94
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a8/
%G ru
%F SJIM_2019_22_4_a8
S. I. Senashov; I. L. Savostyanova. New solutions of dynamic equations of ideal plasticity. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 89-94. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a8/

[1] D. D. Ivlev, L. M. Maksimova, R. I. Nepershin i dr., Predelnoe sostoyanie deformiruemykh tel i konstruktsii, Fizmatlit, M., 2008

[2] V. K. Novatskii, Volnovye zadachi teorii plastichnosti, Mir, M., 1978

[3] V. Olshak, Z. Mruz, P. Pezhina, Sovremennoe sostoyanie teorii plastichnosti, Mir, M., 1964

[4] M. A. Zadoyan, Prostranstvennye zadachi teorii plastichnosti, Nauka, M., 1992

[5] D. D. Ivlev, G. I. Bykovtsev, Teoriya plastichnosti, Dalnauka, Vladivostok, 1998

[6] A. Yu. Ishlinskii, D. D. Ivlev, Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001

[7] B. D. Annin, V. O. Bytev, S. I. Senashov, Gruppovye svoistva uravnenii uprugosti i plastichnosti, Nauka, Novosibirsk, 1985 | MR

[8] A. D. Polyanin, V. F. Zaittsev, Handbook of Nonlinear Partial Differential Equations, CRC Press, London–New York, 2012 | MR

[9] V. G. Babskii, N. D. Kolpachevskii, A. D. Myshkis i dr., Gidrodinamika nevesomosti, Nauka, M., 1975

[10] S. I. Senashov, “Ob odnom klasse tochnykh reshenii uravnenii idealnoi plastichnosti”, Zhurn. prikl. mekhaniki i tekhn. fiziki, 1986, no. 3, 139–142