Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_4_a8, author = {S. I. Senashov and I. L. Savostyanova}, title = {New solutions of dynamic equations of ideal plasticity}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {89--94}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a8/} }
TY - JOUR AU - S. I. Senashov AU - I. L. Savostyanova TI - New solutions of dynamic equations of ideal plasticity JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 89 EP - 94 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a8/ LA - ru ID - SJIM_2019_22_4_a8 ER -
S. I. Senashov; I. L. Savostyanova. New solutions of dynamic equations of ideal plasticity. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 89-94. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a8/
[1] D. D. Ivlev, L. M. Maksimova, R. I. Nepershin i dr., Predelnoe sostoyanie deformiruemykh tel i konstruktsii, Fizmatlit, M., 2008
[2] V. K. Novatskii, Volnovye zadachi teorii plastichnosti, Mir, M., 1978
[3] V. Olshak, Z. Mruz, P. Pezhina, Sovremennoe sostoyanie teorii plastichnosti, Mir, M., 1964
[4] M. A. Zadoyan, Prostranstvennye zadachi teorii plastichnosti, Nauka, M., 1992
[5] D. D. Ivlev, G. I. Bykovtsev, Teoriya plastichnosti, Dalnauka, Vladivostok, 1998
[6] A. Yu. Ishlinskii, D. D. Ivlev, Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001
[7] B. D. Annin, V. O. Bytev, S. I. Senashov, Gruppovye svoistva uravnenii uprugosti i plastichnosti, Nauka, Novosibirsk, 1985 | MR
[8] A. D. Polyanin, V. F. Zaittsev, Handbook of Nonlinear Partial Differential Equations, CRC Press, London–New York, 2012 | MR
[9] V. G. Babskii, N. D. Kolpachevskii, A. D. Myshkis i dr., Gidrodinamika nevesomosti, Nauka, M., 1975
[10] S. I. Senashov, “Ob odnom klasse tochnykh reshenii uravnenii idealnoi plastichnosti”, Zhurn. prikl. mekhaniki i tekhn. fiziki, 1986, no. 3, 139–142